ﻻ يوجد ملخص باللغة العربية
In the classical private information retrieval (PIR) setup, a user wants to retrieve a file from a database or a distributed storage system (DSS) without revealing the file identity to the servers holding the data. In the quantum PIR (QPIR) setting, a user privately retrieves a classical file by receiving quantum information from the servers. The QPIR problem has been treated by Song emph{et al.} in the case of replicated servers, both without collusion and with all but one servers colluding. In this paper, the QPIR setting is extended to account for maximum distance separable (MDS) coded servers. The proposed protocol works for any $[n,k]$-MDS code and $t$-collusion with $t=n-k$. Similarly to the previous cases, the rates achieved are better than those known or conjectured in the classical counterparts. Further, it is demonstrated how the protocol can adapted to achieve significantly higher retrieval rates from DSSs encoded with a locally repairable code (LRC) with disjoint repair groups, each of which is an MDS code.
In quantum private information retrieval (QPIR), a user retrieves a classical file from multiple servers by downloading quantum systems without revealing the identity of the file. The QPIR capacity is the maximal achievable ratio of the retrieved fil
This work investigates a system where each user aims to retrieve a scalar linear function of the files of a library, which are Maximum Distance Separable coded and stored at multiple distributed servers. The system needs to guarantee robust decoding
We investigate the problem of semantic private information retrieval (semantic PIR). In semantic PIR, a user retrieves a message out of $K$ independent messages stored in $N$ replicated and non-colluding databases without revealing the identity of th
We introduce the problem of emph{timely} private information retrieval (PIR) from $N$ non-colluding and replicated servers. In this problem, a user desires to retrieve a message out of $M$ messages from the servers, whose contents are continuously up
In a distributed storage system, private information retrieval (PIR) guarantees that a user retrieves one file from the system without revealing any information about the identity of its interested file to any individual server. In this paper, we inv