ﻻ يوجد ملخص باللغة العربية
Crystals are a state of matter characterised by periodic order. Yet crystalline materials can harbour disorder in many guises, such as non-repeating variations in composition, atom displacements, bonding arrangements, molecular orientations, conformations, charge states, orbital occupancies, or magnetic structure. Disorder can sometimes be random, but more usually it is correlated. Frontier research into disordered crystals now seeks to control and exploit the unusual patterns that persist within these correlated disordered states in order to access functional responses inaccessible to conventional crystals. In this review we survey the core design principles at the disposal of materials chemists that allow targeted control over correlated disorder. We show how these principles---often informed by long-studied statistical mechanical models---can be applied across an unexpectedly broad range of materials, including organics, supramolecular assemblies, oxide ceramics, and metal--organic frameworks. We conclude with a forward-looking discussion of the exciting link to function in responsive media, thermoelectrics, topological phases, and information storage.
The field of Materials Science is concerned with, e.g., properties and performance of materials. An important class of materials are crystalline materials that usually contain ``dislocations -- a line-like defect type. Dislocation decisively determin
Spin-orbit coupling (SOC), the core of numerous condensed-matter phenomena such as nontrivial band gap, magnetocrystalline anisotropy, etc, is generally considered to be appreciable only in heavy elements, detrimental to the synthetization and applic
In addition to being the core quantity in density functional theory, the charge density can be used in many tertiary analyses in materials sciences from bonding to assigning charge to specific atoms. The charge density is data-rich since it contains
Designing new 2D systems with tunable properties is an important subject for science and technology. Starting from graphene, we developed an algorithm to systematically generate 2D carbon crystals belonging to the family of graphdiynes (GDYs) and hav
Charge transport in crystalline organic semiconductors is intrinsically limited by the presence of large thermal molecular motions, which are a direct consequence of the weak van der Waals inter-molecular interactions. These lead to an original regim