ترغب بنشر مسار تعليمي؟ اضغط هنا

A gravitational-wave measurement of the Hubble constant following the second observing run of Advanced LIGO and Virgo

146   0   0.0 ( 0 )
 نشر من قبل LSC P&P Committee
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents the gravitational-wave measurement of the Hubble constant ($H_0$) using the detections from the first and second observing runs of the Advanced LIGO and Virgo detector network. The presence of the transient electromagnetic counterpart of the binary neutron star GW170817 led to the first standard-siren measurement of $H_0$. Here we additionally use binary black hole detections in conjunction with galaxy catalogs and report a joint measurement. Our updated measurement is $H_0 = 69^{+16}_{-8}$ km/s/Mpc (68.3% of the highest density posterior interval with a flat-in-log prior) which is an improvement by a factor of 1.04 (about 4%) over the GW170817-only value of $69^{+17}_{-8}$ km/s/Mpc. A significant additional contribution currently comes from GW170814, a loud and well-localized detection from a part of the sky thoroughly covered by the Dark Energy Survey. With numerous detections anticipated over the upcoming years, an exhaustive understanding of other systematic effects are also going to become increasingly important. These results establish the path to cosmology using gravitational-wave observations with and without transient electromagnetic counterparts.



قيم البحث

اقرأ أيضاً

We present the results of targeted searches for gravitational-wave transients associated with gamma-ray bursts during the second observing run of Advanced LIGO and Advanced Virgo, which took place from 2016 November to 2017 August. We have analyzed 9 8 gamma-ray bursts using an unmodeled search method that searches for generic transient gravitational waves and 42 with a modeled search method that targets compact-binary mergers as progenitors of short gamma-ray bursts. Both methods clearly detect the previously reported binary merger signal GW170817, with p-values of $<9.38 times 10^{-6}$ (modeled) and $3.1 times 10^{-4}$ (unmodeled). We do not find any significant evidence for gravitational-wave signals associated with the other gamma-ray bursts analyzed, and therefore we report lower bounds on the distance to each of these, assuming various source types and signal morphologies. Using our final modeled search results, short gamma-ray burst observations, and assuming binary neutron star progenitors, we place bounds on the rate of short gamma-ray bursts as a function of redshift for $z leq 1$. We estimate 0.07-1.80 joint detections with Fermi-GBM per year for the 2019-20 LIGO-Virgo observing run and 0.15-3.90 per year when current gravitational-wave detectors are operating at their design sensitivities.
The Neil Gehrels Swift Observatory carried out prompt searches for gravitational wave (GW) events detected by the LIGO/Virgo Collaboration (LVC) during the second observing run (O2). Swift performed extensive tiling of eight LVC triggers, two of whic h had very low false-alarm rates (GW 170814 and the epochal GW 170817), indicating a high confidence of being astrophysical in origin; the latter was the first GW event to have an electromagnetic counterpart detected. In this paper we describe the follow-up performed during O2 and the results of our searches. No GW electromagnetic counterparts were detected; this result is expected, as GW 170817 remained the only astrophysical event containing at least one neutron star after LVCs later retraction of some events. A number of X-ray sources were detected, with the majority of identified sources being active galactic nuclei. We discuss the detection rate of transient X-ray sources and their implications in the O2 tiling searches. Finally, we describe the lessons learned during O2, and how these are being used to improve the swift follow-up of GW events. In particular, we simulate a population of GRB afterglows to evaluate our source ranking systems ability to differentiate them from unrelated and uncatalogued X-ray sources. We find that $approx$60-70% of afterglows whose jets are oriented towards Earth will be given high rank (i.e., interesting designation) by the completion of our second follow-up phase (assuming their location in the sky was observed), but that this fraction can be increased to nearly 100% by performing a third follow-up observation of sources exhibiting fading behavior.
Advanced LIGOs second observing run (O2), conducted from November 30, 2016 to August 25, 2017, combined with Advanced Virgos first observations in August 2017 witnessed the birth of gravitational-wave multi-messenger astronomy. The first ever gravita tional-wave detection from the coalescence of two neutron stars, GW170817, and its gamma-ray counterpart, GRB 170817A, led to an electromagnetic follow-up of the event at an unprecedented scale. Several teams from across the world searched for EM/neutrino counterparts to GW170817, paving the way for the discovery of optical, X-ray, and radio counterparts. In this article, we describe the online identification of gravitational-wave transients and the distribution of gravitational-wave alerts by the LIGO and Virgo collaborations during O2. We also describe the gravitational-wave observables which were sent in the alerts to enable searches for their counterparts. Finally, we give an overview of the online candidate alerts shared with observing partners during O2. Alerts were issued for 14 candidates, six of which have been confirmed as gravitational-wave events associated with the merger of black holes or neutron stars. Eight of the 14 alerts were issued less than an hour after data acquisition.
The speed of gravitational waves for a single observation can be measured by the time delay among gravitational-wave detectors with Bayesian inference. Then multiple measurements can be combined to produce a more accurate result. From the near simult aneous detection of gravitational waves and gamma rays originating from GW170817/GRB 170817A, the speed of gravitational wave signal was found to be the same as the the speed of the gamma rays to approximately one part in $10^{15}$. Here we present a different method of measuring the speed of gravitational waves, not based on an associated electromagnetic signal but instead by the measured transit time across a geographically separated network of detectors. While this method is far less precise, it provides an independent measurement of the speed of gravitational waves. For GW170817 a binary neutron star inspiral observed by Advanced LIGO and Advanced Virgo, by fixing sky localization of the source at the electromagnetic counterpart the speed of gravitational waves is constrained to 90% confidence interval (0.97c, 1.02c), where c is the speed of light in a vacuum. By combing seven BBH events and the BNS event from the second observing run of Advanced LIGO and Advanced Virgo, the 90% confidence interval is narrowed down to (0.97c, 1.01c). The accurate measurement of the speed of gravitational waves allows us to test the general theory of relativity. We further interpret these results within the test framework provided by the gravitational Standard-Model Extension (SME). In doing so, we obtain simultaneous constraints on 4 of the 9 nonbirefringent, nondispersive coefficients for Lorentz violation in the gravity sector of the SME and place limits on the anisotropy of the speed of gravity.
Intermediate-mass black holes (IMBHs) span the approximate mass range $100$--$10^5,M_odot$, between black holes (BHs) formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic grav itational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass $sim 150,M_odot,$ providing direct evidence of IMBH formation. Here we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modelled (matched filter) and model independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of further IMBH mergers. We quantify the sensitivity of the individual search methods and of the combined search using a suite of IMBH binary signals obtained via numerical relativity, including the effects of spins misaligned with the binary orbital axis, and present the resulting upper limits on astrophysical merger rates. Our most stringent limit is for equal mass and aligned spin BH binary of total mass $200,M_odot$ and effective aligned spin 0.8 at $0.056,Gpc^{-3} yr^{-1}$ (90 $%$ confidence), a factor of 3.5 more constraining than previous LIGO-Virgo limits. We also update the estimated rate of mergers similar to GW190521 to $0.08, Gpc^{-3}yr^{-1}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا