ﻻ يوجد ملخص باللغة العربية
Modeling the underlying person structure for person re-identification (re-ID) is difficult due to diverse deformable poses, changeable camera views and imperfect person detectors. How to exploit underlying person structure information without extra annotations to improve the performance of person re-ID remains largely unexplored. To address this problem, we propose a novel Relative Local Distance (RLD) method that integrates a relative local distance constraint into convolutional neural networks (CNNs) in an end-to-end way. It is the first time that the relative local constraint is proposed to guide the global feature representation learning. Specially, a relative local distance matrix is computed by using feature maps and then regarded as a regularizer to guide CNNs to learn a structure-aware feature representation. With the discovered underlying person structure, the RLD method builds a bridge between the global and local feature representation and thus improves the capacity of feature representation for person re-ID. Furthermore, RLD also significantly accelerates deep network training compared with conventional methods. The experimental results show the effectiveness of RLD on the CUHK03, Market-1501, and DukeMTMC-reID datasets. Code is available at url{https://github.com/Wanggcong/RLD_codes}.
In this work, we present a deep convolutional pyramid person matching network (PPMN) with specially designed Pyramid Matching Module to address the problem of person re-identification. The architecture takes a pair of RGB images as input, and outputs
Most state-of-the-art person re-identification (re-id) methods depend on supervised model learning with a large set of cross-view identity labelled training data. Even worse, such trained models are limited to only the same-domain deployment with sig
Person re-identification (re-id) suffers from a serious occlusion problem when applied to crowded public places. In this paper, we propose to retrieve a full-body person image by using a person image with occlusions. This differs significantly from t
Fast person re-identification (ReID) aims to search person images quickly and accurately. The main idea of recent fast ReID methods is the hashing algorithm, which learns compact binary codes and performs fast Hamming distance and counting sort. Howe
In this work, we present a Multi-Channel deep convolutional Pyramid Person Matching Network (MC-PPMN) based on the combination of the semantic-components and the color-texture distributions to address the problem of person re-identification. In parti