Emerging new applications demand the current Internet to provide new functionalities. Although many future Internet architectures and protocols have been proposed to fulfill such needs, ISPs have been reluctant to deploy many of these architectures. We believe technical issues are not the main reasons as many of these new proposals are technically sound. In this paper, we take an economic perspective and seek to answer: Why most new Internet architectures failed to be deployed? How to enhance the deployability of a new architecture? We develop a game-theoretic model to characterize the outcome of an architectures deployment through the equilibrium of ISPs decisions. This model enables us to: (1) analyze several key factors of the deployability of a new architecture such as the number of critical ISPs and the change of routing path; (2) explain the deploying outcomes of some previously proposed architectures/protocols such as IPv6, DiffServ, CDN, etc., and shed light on the Internet flattening phenomenon; (3) predict the deployability of a new architecture such as NDN, and compare its deployability with competing architectures. Our study suggests that the difficulty to deploy a new Internet architecture comes from the coordination of distributed ISPs. Finally, we design a coordination mechanism to enhance the deployability of new architectures.