ﻻ يوجد ملخص باللغة العربية
This work is devoted to the study of Bessel and Riesz systems of the type $big{L_{gamma}mathsf{f}big}_{gammain Gamma}$ obtained from the action of the left regular representation $L_{gamma}$ of a discrete non abelian group $Gamma$ which is a semidirect product, on a function $mathsf{f}in ell^2(Gamma)$. The main features about these systems can be conveniently studied by means of a simple matrix-valued function $mathbf{F}(xi)$. These systems allow to derive sampling results in principal $Gamma$-invariant spaces, i.e., spaces obtained from the action of the group $Gamma$ on a element of a Hilbert space. Since the systems $big{L_{gamma}mathsf{f}big}_{gammain Gamma}$ are closely related to convolution operators, a connection with $C^*$-algebras is also established.
In this note we discuss notions of convolutions generated by biorthogonal systems of elements of a Hilbert space. We develop the associated biorthogonal Fourier analysis and the theory of distributions, discuss properties of convolutions and give a number of examples.
The EPDiff equation (or dispersionless Camassa-Holm equation in 1D) is a well known example of geodesic motion on the Diff group of smooth invertible maps (diffeomorphisms). Its recent two-component extension governs geodesic motion on the semidirect
We study infinite products of reproducing kernels with view to their use in dynamics (of iterated function systems), in harmonic analysis, and in stochastic processes. On the way, we construct a new family of representations of the Cuntz relations. T
Let $M$ be a compact, real analytic manifold and $G$ be the Lie group of all real-analytic diffeomorphisms of $M$, which is modelled on the (DFS)-space ${mathfrak g}$ of real-analytic vector fields on $M$. We study flows of time-dependent real-analyt
We provide explicit sequence space representations for the test function and distribution spaces occurring in the Valdivia-Vogt structure tables by making use of Wilson bases generated by compactly supported smooth windows. Furthermore, we show that