ترغب بنشر مسار تعليمي؟ اضغط هنا

Operators with analytic orbit for the torus action

76   0   0.0 ( 0 )
 نشر من قبل Severino T. Melo
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $T^n$ denote the n-dimensional torus. The class of the bounded operators on $L^2(T^n)$ with analytic orbit under the action of $T^n$ by conjugation with the translation operators is shown to coincide with the class of the zero-order pseudodifferential operators on $T^n$ whose discrete symbol $(a_j)_{jin Z^n}$ is uniformly analytic, in the sense that there exists $C>1$ such that the derivatives of $a_j$ satisfy $|partial^alpha a_j(x)|leq C^{1+|alpha|}alpha!$ for all $xin T^n$, all $jin Z^n$ and all $alphain N^n$. This implies that this class of pseudodifferential operators is a spectrally invariant *-subalgebra of the algebra of all bounded operators on $L^2(T^n)$.



قيم البحث

اقرأ أيضاً

A Banach space X has the SHAI (surjective homomorphisms are injective) property provided that for every Banach space Y, every continuous surjective algebra homomorphism from the bounded linear operators on X onto the bounded linear operators on Y is injective. The main result gives a sufficient condition for X to have the SHAI property. The condition is satisfied for L^p (0, 1) for 1 < p < infty, spaces with symmetric bases that have finite cotype, and the Schatten p-spaces for 1 < p < infty.
Let $A = (a_{j,k})_{j,k=-infty}^infty$ be a bounded linear operator on $l^2(mathbb{Z})$ whose diagonals $D_n(A) = (a_{j,j-n})_{j=-infty}^inftyin l^infty(mathbb{Z})$ are almost periodic sequences. For certain classes of such operators and under certai n conditions, we are going to determine the asymptotics of the determinants $det A_{n_1,n_2}$ of the finite sections of the operator $A$ as their size $n_2 - n_1$ tends to infinity. Examples of such operators include block Toeplitz operators and the almost Mathieu operator.
211 - Efton Park 2009
Suppose that $phi$ and $psi$ are smooth complex-valued functions on the circle that are invertible, have winding number zero with respect to the origin, and have meromorphic extensions to an open neighborhood of the closed unit disk. Let $T_phi$ and $T_psi$ denote the Toeplitz operators with symbols $phi$ and $psi$ respectively. We give an explicit formula for the determinant of $T_phi T_psi T_phi^{-1} T_psi^{-1}$ in terms of the products of the tame symbols of $phi$ and $psi$ on the open unit disk.
304 - Shuaibing Luo 2018
In this paper, we study the reducing subspaces for the multiplication operator by a finite Blaschke product $phi$ on the Dirichlet space $D$. We prove that any two distinct nontrivial minimal reducing subspaces of $M_phi$ are orthogonal. When the ord er $n$ of $phi$ is $2$ or $3$, we show that $M_phi$ is reducible on $D$ if and only if $phi$ is equivalent to $z^n$. When the order of $phi$ is $4$, we determine the reducing subspaces for $M_phi$, and we see that in this case $M_phi$ can be reducible on $D$ when $phi$ is not equivalent to $z^4$. The same phenomenon happens when the order $n$ of $phi$ is not a prime number. Furthermore, we show that $M_phi$ is unitarily equivalent to $M_{z^n} (n > 1)$ on $D$ if and only if $phi = az^n$ for some unimodular constant $a$.
Let $G$ be a locally compact abelian group with a Haar measure, and $Y$ be a measure space. Suppose that $H$ is a reproducing kernel Hilbert space of functions on $Gtimes Y$, such that $H$ is naturally embedded into $L^2(Gtimes Y)$ and is invariant u nder the translations associated with the elements of $G$. Under some additional technical assumptions, we study the W*-algebra $mathcal{V}$ of translation-invariant bounded linear operators acting on $H$. First, we decompose $mathcal{V}$ into the direct integral of the W*-algebras of bounded operators acting on the reproducing kernel Hilbert spaces $widehat{H}_xi$, $xiinwidehat{G}$, generated by the Fourier transform of the reproducing kernel. Second, we give a constructive criterion for the commutativity of $mathcal{V}$. Third, in the commutative case, we construct a unitary operator that simultaneously diagonalizes all operators belonging to $mathcal{V}$, i.e., converts them into some multiplication operators. Our scheme generalizes many examples previously studied by Nikolai Vasilevski and other authors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا