ترغب بنشر مسار تعليمي؟ اضغط هنا

Real-time Error Control for Surgical Simulation

55   0   0.0 ( 0 )
 نشر من قبل Huu Phuoc Bui
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Huu Phuoc Bui




اسأل ChatGPT حول البحث

Objective: To present the first real-time a posteriori error-driven adaptive finite element approach for real-time simulation and to demonstrate the method on a needle insertion problem. Methods: We use corotational elasticity and a frictional needle/tissue interaction model. The problem is solved using finite elements within SOFA. The refinement strategy relies upon a hexahedron-based finite element method, combined with a posteriori error estimation driven local $h$-refinement, for simulating soft tissue deformation. Results: We control the local and global error level in the mechanical fields (e.g. displacement or stresses) during the simulation. We show the convergence of the algorithm on academic examples, and demonstrate its practical usability on a percutaneous procedure involving needle insertion in a liver. For the latter case, we compare the force displacement curves obtained from the proposed adaptive algorithm with that obtained from a uniform refinement approach. Conclusions: Error control guarantees that a tolerable error level is not exceeded during the simulations. Local mesh refinement accelerates simulations. Significance: Our work provides a first step to discriminate between discretization error and modeling error by providing a robust quantification of discretization error during simulations.



قيم البحث

اقرأ أيضاً

We present the AMPS algorithm, a finite element solution method that combines principal submatrix updates and Schur complement techniques, well-suited for interactive simulations of deformation and cutting of finite element meshes. Our approach featu res real-time solutions to the updated stiffness matrix systems to account for interactive changes in mesh connectivity and boundary conditions. Updates are accomplished by an augmented matrix formulation of the stiffness equations to maintain its consistency with changes to the underlying model without refactorization at each timestep. As changes accumulate over multiple simulation timesteps, the augmented solution algorithm enables tens or hundreds of updates per second. Acceleration schemes that exploit sparsity, memoization and parallelization lead to the updates being computed in real-time. The complexity analysis and experimental results for this method demonstrate that it scales linearly with the problem size. Results for cutting and deformation of 3D elastic models are reported for meshes with node counts up to 50,000, and involve models of astigmatism surgery and the brain.
This paper addresses some numerical and theoretical aspects of dual Schur domain decomposition methods for linear first-order transient partial differential equations. In this work, we consider the trapezoidal family of schemes for integrating the or dinary differential equations (ODEs) for each subdomain and present four different coupling methods, corresponding to different algebraic constraints, for enforcing kinematic continuity on the interface between the subdomains. Method 1 (d-continuity) is based on the conventional approach using continuity of the primary variable and we show that this method is unstable for a lot of commonly used time integrators including the mid-point rule. To alleviate this difficulty, we propose a new Method 2 (Modified d-continuity) and prove its stability for coupling all time integrators in the trapezoidal family (except the forward Euler). Method 3 (v-continuity) is based on enforcing the continuity of the time derivative of the primary variable. However, this constraint introduces a drift in the primary variable on the interface. We present Method 4 (Baumgarte stabilized) which uses Baumgarte stabilization to limit this drift and we derive bounds for the stabilization parameter to ensure stability. Our stability analysis is based on the ``energy method, and one of the main contributions of this paper is the extension of the energy method (which was previously introduced in the context of numerical methods for ODEs) to assess the stability of numerical formulations for index-2 differential-algebraic equations (DAEs).
The real-time bidding (RTB), aka programmatic buying, has recently become the fastest growing area in online advertising. Instead of bulking buying and inventory-centric buying, RTB mimics stock exchanges and utilises computer algorithms to automatic ally buy and sell ads in real-time; It uses per impression context and targets the ads to specific people based on data about them, and hence dramatically increases the effectiveness of display advertising. In this paper, we provide an empirical analysis and measurement of a production ad exchange. Using the data sampled from both demand and supply side, we aim to provide first-hand insights into the emerging new impression selling infrastructure and its bidding behaviours, and help identifying research and design issues in such systems. From our study, we observed that periodic patterns occur in various statistics including impressions, clicks, bids, and conversion rates (both post-view and post-click), which suggest time-dependent models would be appropriate for capturing the repeated patterns in RTB. We also found that despite the claimed second price auction, the first price payment in fact is accounted for 55.4% of total cost due to the arrangement of the soft floor price. As such, we argue that the setting of soft floor price in the current RTB systems puts advertisers in a less favourable position. Furthermore, our analysis on the conversation rates shows that the current bidding strategy is far less optimal, indicating the significant needs for optimisation algorithms incorporating the facts such as the temporal behaviours, the frequency and recency of the ad displays, which have not been well considered in the past.
This article demonstrates the applicability of the parallel-in-time method Parareal to the numerical solution of the Einstein gravity equations for the spherical collapse of a massless scalar field. To account for the shrinking of the spatial domain in time, a tailored load balancing scheme is proposed and compared to load balancing based on number of time steps alone. The performance of Parareal is studied for both the sub-critical and black hole case; our experiments show that Parareal generates substantial speedup and, in the super-critical regime, can reproduce Choptuiks black hole mass scaling law.
Minimally invasive surgery is a surgical intervention used to examine the organs inside the abdomen and has been widely used due to its effectiveness over open surgery. Due to the hardware improvements such as high definition cameras, this procedure has significantly improved and new software methods have demonstrated potential for computer-assisted procedures. However, there exists challenges and requirements to improve detection and tracking of the position of the instruments during these surgical procedures. To this end, we evaluate and compare some popular deep learning methods that can be explored for the automated segmentation of surgical instruments in laparoscopy, an important step towards tool tracking. Our experimental results exhibit that the Dual decoder attention network (DDANet) produces a superior result compared to other recent deep learning methods. DDANet yields a Dice coefficient of 0.8739 and mean intersection-over-union of 0.8183 for the Robust Medical Instrument Segmentation (ROBUST-MIS) Challenge 2019 dataset, at a real-time speed of 101.36 frames-per-second that is critical for such procedures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا