ﻻ يوجد ملخص باللغة العربية
I will review essential features of the Hamiltonian approach to QCD in Coulomb gauge showing that Gribovs confinement scenario is realized in this gauge. For this purpose I will discuss in detail the emergence of the horizon condition and the Coulomb string tension. I will show that both are induced by center vortex gauge field configurations, which establish the connection between Gribovs confinement scenario and the center vortex picture of confinement. I will then extend the Hamiltonian approach to QCD in Coulomb gauge to finite temperatures, first by the usual grand canonical ensemble and second by the compactification of a spatial dimension. I will present results for the pressure, energy density and interaction measure as well as for the Polyakov loop.
I report on recent results obtained within the Hamiltonian approach to QCD in Coulomb gauge. By relating the Gribov confinement scenario to the center vortex picture of confinement it is shown that the Coulomb string tension is tied to the spatial st
I report on recent results obtained within the Hamiltonian approach to QCD in Coulomb gauge. Furthermore this approach is compared to recent lattice data, which were obtained by an alternative gauge fixing method and which show an improved agreement
I briefly review results obtained within the variational Hamiltonian approach to Yang-Mills theory in Coulomb gauge and confront them with recent lattice data. The variational approach is extended to non-Gaussian wave functionals including three- and
We study the static gluon and quark propagator of the Hamiltonian approach to Quantum Chromodynamics in Coulomb gauge in one-loop Rayleigh--Schrodinger perturbation theory. We show that the results agree with the equal-time limit of the four-dimensio
We investigate the temporal Wilson loop using the Hamiltonian approach to Yang-Mills theory. In simple cases such as the Abelian theory or the non-Abelian theory in (1+1) dimensions, the known results can be reproduced using unitary transformations t