ﻻ يوجد ملخص باللغة العربية
In typical topological insulator (TI) systems the TI is bordered by a non-TI insulator, and the surrounding conventional insulators, including vacuum, are not generally treated as part of the TI system. Here, we implement the first material system where the roles are reversed, and the TSS form around the non-TI (instead of the TI) layers. This is realized by growing a layer of the tunable non-TI $(Bi_{1-x}In_{x})_{2}Se_{3}$ in between two layers of the TI $Bi_2Se_3$ using the atomically-precise molecular beam epitaxy technique. On this tunable inverse topological platform, we systematically vary the thickness and the composition of the $(Bi_{1-x}In_{x})_{2}Se_{3}$ layer and show that this tunes the coupling between the TI layers from strongly-coupled metallic to weakly-coupled, and finally to a fully-decoupled insulating regime. This system can be used to probe the fundamental nature of coupling in TI materials and provides a tunable insulating layer for TI devices.
Novel topological devices require the isolation of topological surface states from trivial bulk states for electronic transport. In this study, we examine a tunable topological system, $Ge(Bi_{x}Sb_{1-x})_{2}Te_{4}$, for a range of x values, using a
Layered indium selenides ($In_{2}Se_{3}$) have recently been discovered to host robust out-of-plane and in-plane ferroelectricity in the $alpha$ and $beta$ phases, respectively. In this work, we utilise angle-resolved photoelectron spectroscopy to di
The prospective of optically inducing a spin polarized current for spintronic devices has generated a vast interest in the out-of-equilibrium electronic and spin structure of topological insulators (TIs). In this Letter we prove that only by measurin
We present angle resolved photoemission experiments and scanning tunneling spectroscopy results on the doped topological insulator Cu0.2Bi2Te3. Quasi-particle interference (QPI) measurements, based on high resolution conductance maps of the local den
As a methodology for controlling the carrier transport of topological insulators (TIs), a flexible tuning in carrier number on the surface states (SSs) of three dimensional TIs by surface modifications using organic molecules is described. The princi