ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetized Moving Mesh Merger of a Carbon-Oxygen White Dwarf Binary

171   0   0.0 ( 0 )
 نشر من قبل Chenchong Zhu
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

White dwarf (WD) binary mergers are possible progenitors to a number of unusual stars and transient phenomena, including type Ia supernovae. To date, simulations of mergers have not included magnetic fields, even though they are believed to play a significant role in the evolution of the merger remnant. We simulated a 0.625 - 0.65 $M_{odot}$ carbon-oxygen WD binary merger in the magnetohydrodynamic moving mesh code Arepo. Each WD was given an initial dipole field with a surface value of $sim10^3$ G. As in simulations of merging double neutron star binaries, we find exponential field growth within Kelvin-Helmholtz instability-generated vortices during the coalescence of the two stars. The final field has complex geometry, and a strength $>10^{10}$ G at the center of the merger remnant. Its energy is $sim2times10^{47}$ ergs, $sim0.2$% of the remnants total energy. The strong field likely influences further evolution of the merger remnant by providing a mechanism for angular momentum transfer and additional heating, potentially helping to ignite carbon fusion.



قيم البحث

اقرأ أيضاً

Recent studies have shown that for suitable initial conditions both super- and sub-Chandrasekhar mass carbon-oxygen white dwarf mergers produce explosions similar to observed SNe Ia. The question remains, however, how much fine tuning is necessary to produce these conditions. We performed a large set of SPH merger simulations, sweeping the possible parameter space. We find trends for merger remnant properties, and discuss how our results affect the viability of our recently proposed sub-Chandrasekhar merger channel for SNe Ia.
152 - Chenchong Zhu 2012
The merger of two carbon-oxygen white dwarfs can lead either to a spectacular transient, stable nuclear burning or a massive, rapidly rotating white dwarf. Simulations of mergers have shown that the outcome strongly depends on whether the white dwarf s are similar or dissimilar in mass. In the similar-mass case, both white dwarfs merge fully and the remnant is hot throughout, while in the dissimilar case, the more massive, denser white dwarf remains cold and essentially intact, with the disrupted lower mass one wrapped around it in a hot envelope and disk. In order to determine what constitutes similar in mass and more generally how the properties of the merger remnant depend on the input masses, we simulated unsynchronized carbon-oxygen white dwarf mergers for a large range of masses using smoothed-particle hydrodynamics. We find that the structure of the merger remnant varies smoothly as a function of the ratio of the central densities of the two white dwarfs. A density ratio of 0.6 approximately separates similar and dissimilar mass mergers. Confirming previous work, we find that the temperatures of most merger remnants are not high enough to immediately ignite carbon fusion. During subsequent viscous evolution, however, the interior will likely be compressed and heated as the disk accretes and the remnant spins down. We find from simple estimates that this evolution can lead to ignition for many remnants. For similar-mass mergers, this would likely occur under sufficiently degenerate conditions that a thermonuclear runaway would ensue.
White dwarfs are dense, cooling stellar embers consisting mostly of carbon and oxygen, or oxygen and neon (with a few percent carbon) at higher initial stellar masses. These stellar cores are enveloped by a shell of helium which in turn is usually su rrounded by a layer of hydrogen, generally prohibiting direct observation of the interior composition. However, carbon is observed at the surface of a sizeable fraction of white dwarfs, sometimes with traces of oxygen, and it is thought to be dredged-up from the core by a deep helium convection zone. In these objects only traces of hydrogen are found as large masses of hydrogen are predicted to inhibit hydrogen/helium convective mixing within the envelope. We report the identification of WDJ055134.612+413531.09, an ultra-massive (1.14 $M_odot$) white dwarf with a unique hydrogen/carbon mixed atmosphere (C/H=0.15 in number ratio). Our analysis of the envelope and interior indicates that the total hydrogen and helium mass fractions must be several orders of magnitude lower than predictions of single star evolution: less than $10^{-9.5}$ and $10^{-7.0}$, respectively. Due to the fast kinematics ($129pm5$ km/s relative to the local standard of rest), large mass, and peculiar envelope composition, we argue that WDJ0551+4135 is consistent with formation from the merger of two white dwarfs in a tight binary system.
We present the discovery of the first T dwarf + white dwarf binary system LSPM 1459+0857AB, confirmed through common proper motion and spectroscopy. The white dwarf is a high proper motion object from the LSPM catalogue that we confirm spectroscopica lly to be a relatively cool (Teff=5535+-45K) and magnetic (B~2MG) hydrogen-rich white dwarf, with an age of at least 4.8Gyrs. The T dwarf is a recent discovery from the UKIRT Infrared Deep Sky Survey (ULAS 1459+0857), and has a spectral type of T4.5+-0.5 and a distance in the range 43-69pc. With an age constraint (inferred from the white dwarf) of >4.8Gyrs we estimate Teff=1200-1500K and logg=5.4-5.5 for ULAS 1459+0857, making it a benchmark T dwarf with well constrained surface gravity. We also compare the T dwarf spectra with the latest LYON group atmospheric model predictions, which despite some shortcomings are in general agreement with the observed properties of ULAS 1459+0857. The separation of the binary components (16,500-26,500AU, or 365 arcseconds on the sky) is consistent with an evolved version of the more common brown dwarf + main-sequence binary systems now known, and although the system has a wide separation, it is shown to be statistically robust as a non spurious association. The observed colours of the T dwarf show that it is relatively bright in the z band compared to other T dwarfs of similar type, and further investigation is warranted to explore the possibility that this could be a more generic indicator of older T dwarfs. Future observations of this binary system will provide even stronger constraints on the T dwarf properties, and additional systems will combine to give a more comprehensively robust test of the model atmospheres in this temperature regime.
Type Ia supernovae (SNe Ia) play a crucial role as standardizable cosmological candles, though the nature of their progenitors is a subject of active investigation. Recent observational and theoretical work has pointed to merging white dwarf binaries , referred to as the double-degenerate channel, as the possible progenitor systems for some SNe Ia. Additionally, recent theoretical work suggests that mergers which fail to detonate may produce magnetized, rapidly-rotating white dwarfs. In this paper, we present the first multidimensional simulations of the post-merger evolution of white dwarf binaries to include the effect of the magnetic field. In these systems, the two white dwarfs complete a final merger on a dynamical timescale, and are tidally disrupted, producing a rapidly-rotating white dwarf merger surrounded by a hot corona and a thick, differentially-rotating disk. The disk is strongly susceptible to the magnetorotational instability (MRI), and we demonstrate that this leads to the rapid growth of an initially dynamically weak magnetic field in the disk, the spin-down of the white dwarf merger, and to the subsequent central ignition of the white dwarf merger. Additionally, these magnetized models exhibit new features not present in prior hydrodynamic studies of white dwarf mergers, including the development of MRI turbulence in the hot disk, magnetized outflows carrying a significant fraction of the disk mass, and the magnetization of the white dwarf merger to field strengths $sim 2 times 10^8$ G. We discuss the impact of our findings on the origins, circumstellar media, and observed properties of SNe Ia and magnetized white dwarfs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا