ﻻ يوجد ملخص باللغة العربية
Since most of the neutrino parameters are well-measured, we illustrate precisely the prediction of the Standard Model, minimally extended to allow massive neutrinos, for the electron neutrino magnetic moment. We elaborate on the effects of light sterile neutrinos on the effective electron neutrino magnetic moment measured at the reactors. We explicitly show that the kinematical effects of the neutrino masses are negligible even for light sterile neutrinos.
The existence of a neutrino magnetic moment implies contributions to the neutrino mass via radiative corrections. We derive model-independent naturalness upper bounds on the magnetic moments of Dirac neutrinos, generated by physics above the electrow
In this work we study the influence of a strong magnetic field on the composition of nuclear matter at T=0 including the anomalous magnetic moment (AMM) of baryons.
Neutrinos, being the only fermions in the Standard Model of Particle Physics that do not possess electromagnetic or color charges, have the unique opportunity to communicate with fermions outside the Standard Model through mass mixing. Such Standard
We use an effective-field-theory approach to construct models with naturally light sterile neutrinos, due to either exact or accidental global symmetries. The most attractive models we find are based on gauge symmetries, either discrete or continuous
We calculate the magnetic moments of heavy baryons with a single heavy quark in the bound-state approach. In this approach the heavy baryons is considered as a heavy meson bound in the field of a light baryon. The light baryon field is represented as