ﻻ يوجد ملخص باللغة العربية
In this paper we give a new proof of the universality of the Tutte polynomial for matroids. This proof uses appropriate characters of Hopf algebra of matroids, algebra introduced by Schmitt (1994). We show that these Hopf algebra characters are solutions of some differential equations which are of the same type as the differential equations used to describe the renormalization group flow in quantum field theory. This approach allows us to also prove, in a different way, a matroid Tutte polynomial convolution formula published by Kook, Reiner and Stanton (1999). This FPSAC contribution is an extended abstract.
Identities obtained by elementary finite Fourier analysis are used to derive a variety of evaluations of the Tutte polynomial of a graph G at certain points (a,b) where (a-1)(b-1) equals 2 or 4. These evaluations are expressed in terms of eulerian su
In [A polynomial invariant of graphs on orientable surfaces, Proc. Lond. Math. Soc., III Ser. 83, No. 3, 513-531 (2001)] and [A polynomial of graphs on surfaces, Math. Ann. 323, 81-96 (2002)], Bollobas and Riordan generalized the classical Tutte poly
This is a survey on the exact complexity of computing the Tutte polynomial. It is the longer 2017 version of Chapter 25 of the CRC Handbook on the Tutte polynomial and related topics, edited by J. Ellis-Monaghan and I. Moffatt, which is due to appear
We construct a polynomial-time algorithm that given a graph $X$ with $4p$ vertices ($p$ is prime), finds (if any) a Cayley representation of $X$ over the group $C_2times C_2times C_p$. This result, together with the known similar result for circulant
We introduce and study the notion of the $G$-Tutte polynomial for a list $mathcal{A}$ of elements in a finitely generated abelian group $Gamma$ and an abelian group $G$, which is defined by counting the number of homomorphisms from associated finite