ﻻ يوجد ملخص باللغة العربية
We discuss recent improvements in the calculation of the radiative cooling in both collisionally and photo ionized plasmas. We are extending the spectral simulation code Cloudy so that as much as possible of the underlying atomic data is taken from external databases, some created by others, some developed by the Cloudy team. This paper focuses on recent changes in the treatment of many stages of ionization of iron, and discusses its extensions to other elements. The H-like and He-like ions are treated in the iso-electronic approach described previously. Fe II is a special case treated with a large model atom. Here we focus on Fe III through Fe XXIV, ions which are important contributors to the radiative cooling of hot, 1e5 to 1e7 K, plasmas and for X-ray spectroscopy. We use the Chianti atomic database to greatly expand the number of transitions in the cooling function. Chianti only includes lines that have atomic data computed by sophisticated methods. This limits the line list to lower excitation, longer wavelength, transitions. We had previously included lines from the Opacity Project database, which tends to include higher energy, shorter wavelength, transitions. These were combined with various forms of the g-bar approximation, a highly approximate method of estimating collision rates. For several iron ions the two databases are almost entirely complementary. We adopt a hybrid approach in which we use Chianti where possible, supplemented by lines from the Opacity Project for shorter wavelength transitions. The total cooling including the lightest thirty elements differs significantly from some previous calculations.
Partially ionized plasmas are found across the Universe in many different astrophysical environments. They constitute an essential ingredient of the solar atmosphere, molecular clouds, planetary ionospheres and protoplanetary disks, among other envir
In many astrophysical environments the plasma is only partially ionized, and therefore the interaction of charged and neutral particles may alter both the triggering of reconnection and its subsequent dynamical evolution. We derive the tearing mode m
In high energy astrophysics scenarios such as blazars, GRBs or PWNe, it is highly probable that ultra-relativistic particles interact with photons in their environment through scattering. As long as the energy of the particle is greater than the ener
Radiative cooling is central to a wide range of astrophysical problems. Despite its importance, cooling rates are generally computed using very restrictive assumptions, such as collisional ionization equilibrium and solar relative abundances. We simu
Most of our knowledge of the physical processes in distant plasmas is obtained through measurement of the radiation they produce. Here we provide an overview of the main collisional and radiative processes and examples of diagnostics relevant to the