ﻻ يوجد ملخص باللغة العربية
Faraday rotation measure (RM) synthesis is an important tool to study and analyze galactic and extra-galactic magnetic fields. Since there is a Fourier relation between the Faraday dispersion function and the polarized radio emission, full reconstruction of the dispersion function requires knowledge of the polarized radio emission at both positive and negative square wavelengths $lambda^2$. However, one can only make observations for $lambda^2 > 0$. Furthermore observations are possible only for a limited range of wavelengths. Thus reconstructing the Faraday dispersion function from these limited measurements is ill-conditioned. In this paper, we propose three new reconstruction algorithms for RM synthesis based upon compressive sensing/sampling (CS). These algorithms are designed to be appropriate for Faraday thin sources only, thick sources only, and mixed sources respectively. Both visual and numerical results show that the new RM synthesis methods provide superior reconstructions of both magnitude and phase information than RM-CLEAN
Compressive sampling is a new paradigm for sampling, based on sparseness of signals or signal representations. It is much less restrictive than Nyquist-Shannon sampling theory and thus explains and systematises the widespread experience that methods
Faraday Rotation Measure (RM) Synthesis, as a method for analyzing multi-channel observations of polarized radio emission to investigate galactic magnetic fields structures, requires the definition of complex polarized intensity in the range of the n
We investigate whether the method of wavelet-based Faraday rotation measure (RM) Synthesis can help us to identify structures of regular and turbulent magnetic fields in extended magnetized objects, such as galaxies and galaxy clusters. Wavelets allo
Rotation measure (RM) synthesis is a widely used polarization processing algorithm for reconstructing polarized structures along the line of sight. Performing RM synthesis on large datasets produced by telescopes like LOFAR can be computationally int
RM Synthesis was recently developed as a new tool for the interpretation of polarized emission data in order to separate the contributions of different sources lying on the same line of sight. Until now the method was mainly applied to discrete sourc