ترغب بنشر مسار تعليمي؟ اضغط هنا

Repeater-assisted Zeno effect in classical stochastic processes

182   0   0.0 ( 0 )
 نشر من قبل Shi-Jian Gu
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As a classical state, for instance a digitized image, is transferred through a classical channel, it decays inevitably with the distance due to the surroundings interferences. However, if there are enough number of repeaters, which can both check and recover the states information continuously, the states decay rate will be significantly suppressed, then a classical Zeno effect might occur. Such a physical process is purely classical and without any interferences of living beings, therefore, it manifests that the Zeno effect is no longer a patent of quantum mechanics, but does exist in classical stochastic processes.



قيم البحث

اقرأ أيضاً

We study the avalanche statistics observed in a minimal random growth model. The growth is governed by a reproduction rate obeying a probability distribution with finite mean a and variance va. These two control parameters determine if the avalanche size tends to a stationary distribution, (Finite Scale statistics with finite mean and variance or Power-Law tailed statistics with exponent in (1, 3]), or instead to a non-stationary regime with Log-Normal statistics. Numerical results and their statistical analysis are presented for a uniformly distributed growth rate, which are corroborated and generalized by analytical results. The latter show that the numerically observed avalanche regimes exist for a wide family of growth rate distributions and provide a precise definition of the boundaries between the three regimes.
153 - A. Saichev , D. Sornette 2013
For any branching process, we demonstrate that the typical total number $r_{rm mp}( u tau)$ of events triggered over all generations within any sufficiently large time window $tau$ exhibits, at criticality, a super-linear dependence $r_{rm mp}( u tau ) sim ( u tau)^gamma$ (with $gamma >1$) on the total number $ u tau$ of the immigrants arriving at the Poisson rate $ u$. In branching processes in which immigrants (or sources) are characterized by fertilities distributed according to an asymptotic power law tail with tail exponent $1 < gamma leqslant 2$, the exponent of the super-linear law for $r_{rm mp}( u tau)$ is identical to the exponent $gamma$ of the distribution of fertilities. For $gamma>2$ and for standard branching processes without power law distribution of fertilities, $r_{rm mp}( u tau) sim ( u tau)^2$. This novel scaling law replaces and tames the divergence $ u tau/(1-n)$ of the mean total number ${bar R}_t(tau)$ of events, as the branching ratio (defined as the average number of triggered events of first generation per source) tends to 1. The derivation uses the formalism of generating probability functions. The corresponding prediction is confirmed by numerical calculations and an heuristic derivation enlightens its underlying mechanism. We also show that ${bar R}_t(tau)$ is always linear in $ u tau$ even at criticality ($n=1$). Our results thus illustrate the fundamental difference between the mean total number, which is controlled by a few extremely rare realizations, and the typical behavior represented by $r_{rm mp}( u tau)$.
We investigate the effects of exponentially correlated noise on birhythmic van der Pol type oscillators. The analytical results are obtained applying the quasi-harmonic assumption to the Langevin equation to derive an approximated Fokker-Planck equat ion. This approach allows to analytically derive the probability distributions as well as the activation energies associated to switching between coexisting attractors. The stationary probability density function of the van der Pol oscillator reveals the influence of the correlation time on the dynamics. Stochastic bifurcations are discussed through a qualitative change of the stationary probability distribution, which indicates that noise intensity and correlation time can be treated as bifurcation parameters. Comparing the analytical and numerical results, we find good agreement both when the frequencies of the attractors are about equal or when they are markedly different.
We investigate a stationary processs crypticity---a measure of the difference between its hidden state information and its observed information---using the causal states of computational mechanics. Here, we motivate crypticity and cryptic order as ph ysically meaningful quantities that monitor how hidden a hidden process is. This is done by recasting previous results on the convergence of block entropy and block-state entropy in a geometric setting, one that is more intuitive and that leads to a number of new results. For example, we connect crypticity to how an observer synchronizes to a process. We show that the block-causal-state entropy is a convex function of block length. We give a complete analysis of spin chains. We present a classification scheme that surveys stationary processes in terms of their possible cryptic and Markov orders. We illustrate related entropy convergence behaviors using a new form of foliated information diagram. Finally, along the way, we provide a variety of interpretations of crypticity and cryptic order to establish their naturalness and pervasiveness. Hopefully, these will inspire new applications in spatially extended and network dynamical systems.
A theory of systems with long-range correlations based on the consideration of binary N-step Markov chains is developed. In the model, the conditional probability that the i-th symbol in the chain equals zero (or unity) is a linear function of the nu mber of unities among the preceding N symbols. The correlation and distribution functions as well as the variance of number of symbols in the words of arbitrary length L are obtained analytically and numerically. A self-similarity of the studied stochastic process is revealed and the similarity group transformation of the chain parameters is presented. The diffusion Fokker-Planck equation governing the distribution function of the L-words is explored. If the persistent correlations are not extremely strong, the distribution function is shown to be the Gaussian with the variance being nonlinearly dependent on L. The applicability of the developed theory to the coarse-grained written and DNA texts is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا