ﻻ يوجد ملخص باللغة العربية
Mixtures are convex combinations of laws. Despite this simple definition, a mixture can be far more subtle than its mixed components. For instance, mixing Gaussian laws may produce a potential with multiple deep wells. We study in the present work fine properties of mixtures with respect to concentration of measure and Sobolev type functional inequalities. We provide sharp Laplace bounds for Lipschitz functions in the case of generic mixtures, involving a transportation cost diameter of the mixed family. Additionally, our analysis of Sobolev type inequalities for two-component mixtures reveals natural relations with some kind of band isoperimetry and support constrained interpolation via mass transportation. We show that the Poincare constant of a two-component mixture may remain bounded as the mixture proportion goes to 0 or 1 while the logarithmic Sobolev constant may surprisingly blow up. This counter-intuitive result is not reducible to support disconnections, and appears as a reminiscence of the variance-entropy comparison on the two-point space. As far as mixtures are concerned, the logarithmic Sobolev inequality is less stable than the Poincare inequality and the sub-Gaussian concentration for Lipschitz functions. We illustrate our results on a gallery of concrete two-component mixtures. This work leads to many open questions.
Concentration properties of functionals of general Poisson processes are studied. Using a modified $Phi$-Sobolev inequality a recursion scheme for moments is established, which is of independent interest. This is applied to derive moment and concentr
A central tool in the study of nonhomogeneous random matrices, the noncommutative Khintchine inequality of Lust-Piquard and Pisier, yields a nonasymptotic bound on the spectral norm of general Gaussian random matrices $X=sum_i g_i A_i$ where $g_i$ ar
Concentration bounds for non-product, non-Haar measures are fairly recent: the first such result was obtained for contracting Markov chains by Marton in 1996 via the coupling method. The work that followed, with few exceptions, also used coupling. Al
We prove that if ${(P_x)}_{xin mathscr X}$ is a family of probability measures which satisfy the log-Sobolev inequality and whose pairwise chi-squared divergences are uniformly bounded, and $mu$ is any mixing distribution on $mathscr X$, then the mix
We consider a general class of metric measure spaces equipped with a regular Dirichlet form and then provide a lower bound on the hitting time probabilities of the associated Hunt process. Using these estimates we establish (i) a generalization of th