ترغب بنشر مسار تعليمي؟ اضغط هنا

Quark and lepton masses from top loops

106   0   0.0 ( 0 )
 نشر من قبل Patrick J. Fox
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Assuming that the leptons and quarks other than top are massless at tree level, we show that their masses may be induced by loops involving the top quark. As a result, the generic features of the fermion mass spectrum arise from combinations of loop factors. Explicitly, we construct a renormalizable model involving a few new particles, which leads to 1-loop bottom and tau masses, a 2-loop charm mass, 3-loop muon and strange masses, and 4-loop masses for first generation fermions. This realistic pattern of masses does not require any symmetry to differentiate the three generations of fermions. The new particles may produce observable effects in future experiments searching for mu to e conversion in nuclei, rare meson decays, and other processes.



قيم البحث

اقرأ أيضاً

Reliable values of quark and lepton masses are important for model building at a fundamental energy scale, such as the Fermi scale M_Z approx 91.2 GeV and the would-be GUT scale Lambda_GUT sim 2 times 10^16 GeV. Using the latest data given by the Par ticle Data Group, we update the running quark and charged-lepton masses at a number of interesting energy scales below and above M_Z. In particular, we take into account the possible new physics scale (mu sim 1 TeV) to be explored by the LHC and the typical seesaw scales (mu sim 10^9 GeV and mu sim 10^12 GeV) which might be relevant to the generation of neutrino masses. For illustration, the running masses of three light Majorana neutrinos are also calculated. Our up-to-date table of running fermion masses are expected to be very useful for the study of flavor dynamics at various energy scales.
64 - I. Masina , C.A. Savoy 2006
The quark and charged lepton masses and the angles and phase of the CKM mixing matrix are nicely reproduced in a model which assumes SU(3)xSU(3) flavour symmetry broken by the v.e.v.s of fields in its bi-fundamental representation. The relations amon g the quark mass eigenvalues, m_u/m_c approx m_c/m_t approx m^2_d/m^2_s approx m^2_s/m^2_b approx Lambda^2_{GUT}/M^2_{Pl}, follow from the broken flavour symmetry. Large tan(beta) is required which also provides the best fits to data for the obtained textures. Lepton-quark grandunification with a field that breaks both SU(5) and the flavour group correctly extends the predictions to the charged lepton masses. The seesaw extension of the model to the neutrino sector predicts a Majorana mass matrix quadratically hierarchical as compared to the neutrino Dirac mass matrix, naturally yielding large mixings and low mass hierarchy for neutrinos.
We propose a novel strategy to test lepton flavor universality (LFU) in top decays, applicable to top pair production at colliders. Our proposal exploits information in kinematic distributions and mostly hinges on data-driven techniques, thus having very little dependence on our theoretical understanding of top pair production. Based on simplified models accommodating recent hints of LFU violation in charged current B meson decays, we show that existing LHC measurements already provide non-trivial information on the flavor structure and the mass scale of such new physics (NP). We also project that the measurements of LFU in top decays at the high-luminosity LHC could reach a precision at the percent level or below, improving the sensitivity to LFU violating NP in the top sector by more than an order of magnitude compared to existing approaches.
120 - U. Baur 2005
The International Linear Collider (ILC) will be able to precisely measure the electroweak couplings of the top in e+e- -> tt~. We compare the limits which can be achieved at the ILC with those which can be obtained in tt~gamma$ and tt~Z production at the Large Hadron Collider (LHC).
138 - U. Baur 2006
We discuss possibilities to measure the tt-gamma and ttZ couplings at hadron and lepton colliders. We also briefly describe how these measurements can be used to constrain the parameter space of models of new physics, in particular Little Higgs models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا