ﻻ يوجد ملخص باللغة العربية
In this note we present two natural restrictions of the local Hamiltonian problem which are BQP-complete under Karp reduction. Restrictions complete for QCMA, QMA_1, and MA were demonstrated previously.
The Local Hamiltonian problem is the problem of estimating the least eigenvalue of a local Hamiltonian, and is complete for the class QMA. The 1D problem on a chain of qubits has heuristics which work well, while the 13-state qudit case has been show
The Lagrangian representation of multi-Hamiltonian PDEs has been introduced by Y. Nutku and one of us (MVP). In this paper we focus on systems which are (at least) bi-Hamiltonian by a pair $A_1$, $A_2$, where $A_1$ is a hydrodynamic-type Hamiltonian
We analyze general uncertainty relations and we show that there can exist such pairs of non--commuting observables $A$ and $B$ and such vectors that the lower bound for the product of standard deviations $Delta A$ and $Delta B$ calculated for these v
For the variational quantum eigensolver we propose to generate trial wavefunctions from a small amount of selected Pauli terms of the problem Hamiltonian. Two different approaches, one inspired by the quantum approximate optimization algorithm and th
We present a Hamiltonian quantum computation scheme universal for quantum computation (BQP). Our Hamiltonian is a sum of a polynomial number (in the number of gates L in the quantum circuit) of time-independent, constant-norm, 2-local qubit-qubit int