ترغب بنشر مسار تعليمي؟ اضغط هنا

Fragmentation cross-sections and binding energies of neutron-rich nuclei

255   0   0.0 ( 0 )
 نشر من قبل Betty Tsang
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

An exponential dependence of the fragmentation cross-section on the average binding energy is observed and reproduced with a statistical model. The observed functional dependence is robust and allows the extraction of binding energies from measured cross-sections. From the systematics of 75,77,78,79Cu isotope cross-sections have been extracted. They are 636.94 +/- 0.40 MeV, 647.1 +/- 0.4 MeV, 651.6 +/- 0.4 MeV and 657.8 +/- 0.5 MeV, respectively. Specifically, the uncertainty of the binding energy of 75Cu is reduced from 980 keV (listed value in the 2003 mass table of Audi and Wapstra) to 400 keV. The predicted cross-sections of two near drip-line nuclei, 39Na and 40Mg, from the fragmentation of 48Ca are discussed.



قيم البحث

اقرأ أيضاً

177 - M. Mocko , M. B. Tsang , Z.Y. Sun 2007
Using the measured fragmentation cross sections produced from the 48Ca and 64Ni beams at 140 MeV per nucleon on 9Be and 181Ta targets, we find that the cross sections of unmeasured neutron rich nuclei can be extrapolated using a systematic trend invo lving the average binding energy. The extrapolated cross-sections will be very useful in planning experiments with neutron rich isotopes produced from projectile fragmentation. The proposed method is general and could be applied to other fragmentation systems including those used in other radioactive ion beam facilities.
The fragmentation of neutron-rich 132Sn nuclei produced in the fission of 238U projectiles at 950 MeV/u has been investigated at the FRagment Separator (FRS) at GSI. This work represents the first investigation of fragmentation of medium-mass radioac tive projectiles with a large neutron excess. The measured production cross sections of the residual nuclei are relevant for the possible use of a two-stage reaction scheme (fission+fragmentation) for the production of extremely neutron-rich medium-mass nuclei in future rare-ion-beam facilities. Moreover, the new data will provide a better understanding of the memory effect in fragmentation reactions.
The results of measurements of the production of neutron-rich nuclei by the fragmentation of a 48Ca beam at 142 MeV/u are presented. Evidence was found for the production of a new isotope that is the most neutron-rich silicon nuclide, 44Si, in a net neutron pick-up process. A simple systematic framework was found to describe the production cross sections based on thermal evaporation from excited prefragments that allows extrapolation to other weak reaction products.
The neutron total cross sections $sigma_{tot}$ of $^{16,18}$O, $^{58,64}$Ni, $^{103}$Rh, and $^{112,124}$Sn have been measured at the Los Alamos Neutron Science Center (LANSCE) from low to intermediate energies (3 $leq E_{lab} leq$ 450 MeV) by levera ging waveform-digitizer technology. The $sigma_{tot}$ relative differences between isotopes are presented, revealing additional information about the isovector components needed for an accurate optical-model description away from stability. Digitizer-enabled $sigma_{tot}$-measurement techniques are discussed and a series of uncertainty-quantified dispersive optical model (DOM) analyses using these new data is presented, validating the use of the DOM for modeling light systems ($^{16,18}$O) and systems with open neutron shells ($^{58,64}$Ni and $^{112,124}$Sn). The valence-nucleon spectroscopic factors extracted for each isotope reaffirm the usefulness of high-energy proton reaction cross sections for characterizing depletion from the mean-field expectation.
Production cross sections for neutron-rich nuclei from the fragmentation of a 82Se beam at 139 MeV/u were measured. The longitudinal momentum distributions of 122 neutron-rich isotopes of elements $11 le Z le 32$ were determined by varying the target thickness. Production cross sections with beryllium and tungsten targets were determined for a large number of nuclei including several isotopes first observed in this work. These are the most neutron-rich nuclides of the elements $22 le Z le 25$ (64Ti, 67V, 69Cr, 72Mn). One event was registered consistent with 70Cr, and another one with 75Fe. A one-body Qg systematics is used to describe the production cross sections based on thermal evaporation from excited prefragments. The current results confirm those of our previous experiment with a 76Ge beam: enhanced production cross sections for neutron-rich fragments near Z=20.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا