ﻻ يوجد ملخص باللغة العربية
The gamma-decay properties of 24Mg excited states are investigated in the inverse reaction 24Mg+12C at E(24Mg) = 130 MeV. At this energy the direct inelastic scattering populates a 24Mg* energy region where 12C+12C breakup resonances can occur. Very exclusive data were collected with the Binary Reaction Spectrometer (BRS) in coincidence with EUROBALL installed at the VIVITRON Tandem facility of the IReS at Strasbourg. The experimental detection system is decribed and preliminary results of binary reaction coincid data are presented.
Charged particle and gamma decays in light alpha-like nuclei are investigated for 24Mg+12C. Various theoretical predictions for the occurence of superdeformed and hyperdeformed bands associated with resonance structures with low spin are presented. T
The occurence of exotic shapes in light N=Z alpha-like nuclei is investigated for 24Mg+12C and 32S+24Mg. Various approaches of superdeformed and hyperdeformed bands associated with quasimolecular resonant structures with low spin are presented. For b
Charged particle and gamma decays in 24Mg* are investigated for excitation energies where quasimolecular resonances appear in 12C+12C collisions. Various theoretical predictions for the occurence of superdeformed and hyperdeformed bands associated wi
New experimental data for the 12C+12C reaction have been measured in the centre-of-mass energy range E_{c.m.}= 40 to 60 MeV. Excitation functions for a number of single and mutual $^{12}$C inelastic channels have been measured which include the 0_{gs
Differential cross sections and analyzing powers for elastic scattering from, and for inelastic proton scattering to a set of $2^+_1$ states in, ${}^{12}$C, ${}^{20}$Ne, ${}^{24}$Mg, ${}^{28}$Si and ${}^{40}$Ca, and for a set of energies between 35 t