ﻻ يوجد ملخص باللغة العربية
We show that it is possible to formulate the most general first-class gauge algebra of the operator formalism by only using BRST-invariant constraints. In particular, we extend a previous construction for irreducible gauge algebras to the reducible case. The gauge algebra induces two nilpotent, Grassmann-odd, mutually anticommuting BRST operators that bear structural similarities with BRST/anti-BRST theories but with shifted ghost number assignments. In both cases we show how the extended BRST algebra can be encoded into an operator master equation. A unitarizing Hamiltonian that respects the two BRST symmetries is constructed with the help of a gauge-fixing Boson. Abelian reducible theories are shown explicitly in full detail, while non-Abelian theories are worked out for the lowest reducibility stages and ghost momentum ranks.
A general method of the BRST--anti-BRST symmetric conversion of second-class constraints is presented. It yields a pair of commuting and nilpotent BRST-type charges that can be naturally regarded as BRST and anti-BRST ones. Interchanging the BRST and
We give a detailed review of the construction of gauge invariant Lagrangians for free and interacting higher spin fields using the BRST approach developed over the past few years.
The unfree gauge symmetry implies that gauge variation of the action functional vanishes provided for the gauge parameters are restricted by the differential equations. The unfree gauge symmetry is shown to lead to the global conserved quantities who
Basic properties of gauge theories in the framework of Faddeev-Popov (FP) method, Batalin-Vilkovisky (BV) formalism, functional renormalization group approach are considered. The FP- and BV- quantizations are characterized by the BRST symmetry while
In the field-antifield formalism, we review existence and uniqueness proofs for the proper action in the reducible case. We give two new existence proofs based on two resolution degrees called reduced antifield number and shifted antifield number, re