ﻻ يوجد ملخص باللغة العربية
Supernovae are rare nearby, but they are not rare in the Universe, and all past core-collapse supernovae contributed to the Diffuse Supernova Neutrino Background (DSNB), for which the near-term detection prospects are very good. The Super-Kamiokande limit on the DSNB electron {it antineutrino} flux, $phi(E_ u > 19.3 {rm MeV}) < 1.2$ cm$^{-2}$ s$^{-1}$, is just above the range of recent theoretical predictions based on the measured star formation rate history. We show that the Sudbury Neutrino Observatory should be able to test the corresponding DSNB electron {it neutrino} flux with a sensitivity as low as $phi(22.5 < E_ u < 32.5 {rm MeV}) simeq 6 $ cm$^{-2}$ s$^{-1}$, improving the existing Mont Blanc limit by about three orders of magnitude. While conventional supernova models predict comparable electron neutrino and antineutrino fluxes, it is often considered that the first (and forward-directed) SN 1987A event in the Kamiokande-II detector should be attributed to electron-neutrino scattering with an electron, which would require a substantially enhanced electron neutrino flux. We show that with the required enhancements in either the burst or thermal phase $ u_e$ fluxes, the DSNB electron neutrino flux would generally be detectable in the Sudbury Neutrino Observatory. A direct experimental test could then resolve one of the enduring mysteries of SN 1987A: whether the first Kamiokande-II event reveals a serious misunderstanding of supernova physics, or was simply an unlikely statistical fluctuation. Thus the electron neutrino sensitivity of the Sudbury Neutrino Observatory is an important complement to the electron antineutrino sensitivity of Super-Kamiokande in the quest to understand the DSNB.
A search has been performed for neutrinos from two sources, the $hep$ reaction in the solar $pp$ fusion chain and the $ u_e$ component of the diffuse supernova neutrino background (DSNB), using the full dataset of the Sudbury Neutrino Observatory wit
The Diffuse Supernova Neutrino Background (DSNB) in the MeV regime represents the cumulative cosmic neutrino emission, predominantly due to core collapse supernovae. We estimate the DSNB flux for different Star Formation Rate Density (SFRD) models. W
Scalar (fermion) dark matter with mass in the MeV range coupled to ordinary neutrinos and another fermion (scalar) is motivated by scenarios that establish a link between radiatively generated neutrino masses and the dark matter relic density. With s
LENA (Low Energy Neutrino Astronomy) has been proposed as a next generation 50 kt liquid scintillator detector. Its large target mass allows to search for the Diffuse Supernova Neutrino Background (DSNB), which was generated by the cumulative emissio
The long baseline between the Earth and the Sun makes solar neutrinos an excellent test beam for exploring possible neutrino decay. The signature of such decay would be an energy-dependent distortion of the traditional survival probability which can