ﻻ يوجد ملخص باللغة العربية
We study the percolation properties of graph partitioning on random regular graphs with N vertices of degree $k$. Optimal graph partitioning is directly related to optimal attack and immunization of complex networks. We find that for any partitioning process (even if non-optimal) that partitions the graph into equal sized connected components (clusters), the system undergoes a percolation phase transition at $f=f_c=1-2/k$ where $f$ is the fraction of edges removed to partition the graph. For optimal partitioning, at the percolation threshold, we find $S sim N^{0.4}$ where $S$ is the size of the clusters and $ellsim N^{0.25}$ where $ell$ is their diameter. Additionally, we find that $S$ undergoes multiple non-percolation transitions for $f<f_c$.
We numerically investigate the structure of many-body wave functions of 1D random quantum circuits with local measurements employing the participation entropies. The leading term in system size dependence of participation entropies indicates a multif
The effects of quenched disorder on nonequilibrium phase transitions in the directed percolation universality class are revisited. Using a strong-disorder energy-space renormalization group, it is shown that for any amount of disorder the critical be
We explore a class of random tensor network models with ``stabilizer local tensors which we name Random Stabilizer Tensor Networks (RSTNs). For RSTNs defined on a two-dimensional square lattice, we perform extensive numerical studies of entanglement
The Potts model is one of the most popular spin models of statistical physics. The prevailing majority of work done so far corresponds to the lattice version of the model. However, many natural or man-made systems are much better described by the top
We investigate dynamical quantum phase transitions in disordered quantum many-body models that can support many-body localized phases. Employing $l$-bits formalism, we lay out the conditions for which singularities indicative of the transitions appea