ترغب بنشر مسار تعليمي؟ اضغط هنا

Instabilities of one- and two-dimensional degenerate atomic Fermi gas against a long-wave perturbation in optical lattice

60   0   0.0 ( 0 )
 نشر من قبل Lyubov' Manakova A.
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف L.A. Manakova




اسأل ChatGPT حول البحث

A mechanism of both formation of peaks in the density of states near the Fermi surface and phase instabilities of nearly ideal degenerate Fermi gas in low-dimensional optical lattices is proposed. According to this mechanism, peak formation is caused by the quasi-classical quantization of the one- and two-dimensional fermionic spectrum in the neighborhood of its extremal points under interaction with an long-wave periodical perturbation. The new spectra result in the instabilities with respect to spontaneous formation of an equilibrium superstructure. In the one-dimensional case this happens for low enough numbers of fermionic atoms. As a result of such transition, fermions become localized (a transition of the metal-insulator type). In the two-dimensional system the transition is possible for a nearly half-filled band. In this case fermions are localized in the wave direction only. It is briefly discussed the possible influence of the results obtained in the paper on the superfluid transition temperature in high anisotropic lattices possessing quasi-(one,two)-dimensional subsystems of fermionic atoms.



قيم البحث

اقرأ أيضاً

89 - L.A.Manakova 2005
In the present paper one-dimensional two-component atomic Fermi gas is considered in long-wave limit as a Luttinger liquid. The mechanisms leading to instability of the non-Fermi-liquid state of a Luttinger liquid with two-level impurities are propos ed. Since exchange scattering in 1D systems is two-channel scattering in a certain range of parameters, several types of non-Fermi-liquid excitations with different quantum numbers exist in the vicinity of the Fermi level. These excitations include, first, charge density fluctuations in the Luttinger liquid and, second, many-particle excitations due to two-channel exchange interaction, which are associated with band-type as well as impurity fermion states. It is shown that mutual scattering of many-particle excitations of various types leads to the emergence of an additional Fermi-liquid singularity in the vicinity of the Fermi level. The conditions under which the Fermi-liquid state with a new energy scale (which is much smaller than the Kondo temperature) is the ground state of the system are formulated.
We simulate a balanced attractively interacting two-component Fermi gas in a one-dimensional lattice perturbed with a moving potential well or barrier. Using the time-evolving block decimation method, we study different velocities of the perturbation and distinguish two velocity regimes based on clear differences in the time evolution of particle densities and the pair correlation function. We show that, in the slow regime, the densities deform as particles are either attracted by the potential well or repelled by the barrier, and a wave front of hole or particle excitations propagates at the maximum group velocity. Simultaneously, the initial pair correlations are broken and coherence over different sites is lost. In contrast, in the fast regime, the densities are not considerably deformed and the pair correlations are preserved.
Understanding novel pairings in attractive degenerate Fermi gases is crucial for exploring rich superfluid physics. In this report, we reveal unconventional pairings induced by spin-orbit coupling (SOC) in a one-dimensional optical lattice, using a s tate-of-the-art density-matrix renormalization group method. When both bands are partially occupied, we find a strong competition between the interband Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) and intraband Bardeen-Cooper-Schrieffer (BCS) pairings. In particular, for the weak and moderate SOC strengths, these two pairings can coexist, giving rise to a new phase called the FFLO-BCS phase, which exhibits a unique three-peak structure in pairing momentum distribution. For the strong SOC strength, the intraband BCS pairing always dominates in the whole parameter regime, including the half filling. We figure out the whole phase diagrams as functions of filling factor, SOC strength, and Zeeman field. Our results are qualitatively different from recent mean-field predictions. Finally, we address that our predictions could be observed in a weaker trapped potential.
We study the viscous properties of a system of weakly interacting spin-$frac{1}{2}$ fermions in one dimension. Accounting for the effect of interactions on the quasiparticle energy spectrum, we obtain the bulk viscosity of this system at low temperat ures. Our result is valid for frequencies that are small compared with the rate of fermion backscattering. For frequencies larger than this exponentially small rate, the excitations of the system become decoupled from the center of mass motion, and the fluid is described by two-fluid hydrodynamics. We calculate the three transport coefficients required to describe viscous dissipation in this regime.
We investigate the effect of the anisotropy between the s-wave scattering lengths of a three-component atomic Fermi gas loaded into a one-dimensional optical lattice. We find four different phases which support trionic instabilities made of bound sta tes of three fermions. These phases distinguish themselves by the relative phases between the 2$k_F$ atomic density waves fluctuations of the three species. At small enough densities or strong anisotropies we give further evidences for a decoupling and the stabilization of more conventional BCS phases. Finally our results are discussed in light of a recent experiment on $^{6}$Li atoms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا