ﻻ يوجد ملخص باللغة العربية
A vortex in a condensate in a nonspherical trapping potential will in general experience a torque. The torque will induce tilting of the direction of the vortex axis. We observe this behavior experimentally and show that by applying small distortions to the trapping potential, we can control the tilting behaviour. By suppressing vortex tilt, we have been able to hold the vortex axis along the line of sight for up to 15 seconds. Alternatively, we can induce a 180 degree tilt, effectively reversing the charge on the vortex as observed in the lab frame. We characterize the vortex non-destructively with a surface-wave spectroscopic technique.
Surface modes in a Bose-Einstein condensate of sodium atoms have been studied. We observed excitations of standing and rotating quadrupolar and octopolar modes. The modes were excited with high spatial and temporal resolution using the optical dipole
Excitation spectroscopy of vortex lattices in rotating Bose-Einstein condensates is described. We numerically obtain the Bogoliubov-deGenne quasiparticle excitations for a broad range of energies and analyze them in the context of the complex dynamic
We study Bragg spectroscopy of a strongly interacting Bose-Einstein condensate using time-dependent Hartree-Fock-Bogoliubov theory. We include approximatively the effect of the momentum dependent scattering amplitude which is shown to be the dominant
We have developed an evaporative cooling technique that accelerates the circulation of an ultra-cold $^{87}$Rb gas, confined in a static harmonic potential. As a normal gas is evaporatively spun up and cooled below quantum degeneracy, it is found to
A dressed basis is used to calculate the dynamics of three-wave mixing between Bogoliubov quasi-particles in a Bose condensate. Due to the observed oscillations between different momenta modes, an energy splitting, analogous to the optical Mollow tri