ترغب بنشر مسار تعليمي؟ اضغط هنا

Source Counts from the 15 microns ISOCAM Deep Surveys

81   0   0.0 ( 0 )
 نشر من قبل David Elbaz
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of the five mid-IR 15 microns (12-18 microns LW3 band) ISOCAM Guaranteed Time Extragalactic Surveys performed in the regions of the Lockman Hole and Marano Field. The roughly 1000 sources detected, 600 of which have a flux above the 80 % completeness limit, guarantee a very high statistical significance for the integral and differential source counts from 0.1 mJy up to 5 mJy. By adding the ISOCAM surveys of the HDF-North and South (plus flanking fields) and the lensing cluster A2390 at low fluxes and IRAS at high fluxes, we cover four decades in flux from 50 microJy to 0.3 Jy. The slope of the differential counts is very steep (alpha =-3.0) in the flux range 0.4-4 mJy, hence much above the Euclidean expectation of alpha =-2.5. When compared with no-evolution models based on IRAS, our counts show a factor of 10 excess at 400 microJy, and a fast convergence, with alpha =-1.6 at lower fluxes.



قيم البحث

اقرأ أيضاً

124 - C.P. Pearson , S. Oyabu , T. Wada 2010
We present galaxy counts at 15 microns using the Japanese AKARI satellites NEP-deep and NEP-wide legacy surveys at the North Ecliptic Pole. The total number of sources detected are approximately 6700 and 10,700 down to limiting fluxes of 117 and 250 microJy (5 sigma) for the NEP-deep and NEP-wide survey respectively. We construct the Euclidean normalized differential source counts for both data sets (assuming 80 percent completeness levels of 200 and 270 microJy respectively) to produce the widest and deepest contiguous survey at 15 microns to date covering the entire flux range from the deepest to shallowest surveys made with the Infrared Space Observatory (ISO) over areas sufficiently significant to overcome cosmic variance, detecting six times as many sources as the largest survey carried out with ISO.We compare the results from AKARI with the previous surveys with ISO at the same wavelength and the Spitzer observations at 16 microns using the peek-up camera on its IRS instrument. The AKARI source counts are consistent with other results to date reproducing the steep evolutionary rise at fluxes less than a milliJansky and super-Euclidean slopes. We find the the AKARI source counts show a slight excess at fluxes fainter than 200 microJanskys which is not predicted by previous source count models at 15 microns. However, we caution that at this level we may be suffering from the effects of source confusion in our data. At brighter fluxes greater than a milliJansky, the NEP-wide survey source counts agree with the Northern ISO-ELAIS field results, resolving the discrepancy of the bright end calibration in the ISO 15 micron source counts.
We derive galaxy source counts at 70 and 160 microns using the Multiband Imaging Photometer for Spitzer (MIPS) to map the Chandra Deep Field South (CDFS) and other fields. At 70 microns, our observations extend upwards about 2 orders of magnitude in flux density from a threshold of 15 mJy, and at 160 microns they extend about an order of magnitude upward from 50 mJy. The counts are consistent with previous observations on the bright end. Significant evolution is detected at the faint end of the counts in both bands, by factors of 2-3 over no-evolution models. This evolution agrees well with models that indicate most ofthe faint galaxies lie at redshifts between 0.7 and 0.9. The new Spitzer data already resolve about 23% of the Cosmic Far Infrared Background at 70 microns and about 7% at 160 microns.
435 - Casey Papovich 2004
Galaxy source counts in the infrared provide strong constraints on the evolution of the bolometric energy output from distant galaxy populations. We present the results from deep 24 micron imaging from Spitzer surveys, which include approximately 50, 000 sources to an 80% completeness of 60 uJy. The 24 micron counts rapidly rise at near-Euclidean rates down to 5 mJy, increase with a super-Euclidean rate between 0.4 - 4 mJy, and converge below 0.3 mJy. The 24 micron counts exceed expectations from non-evolving models by a factor >10 at 0.1 mJy. The peak in the differential number counts corresponds to a population of faint sources that is not expected from predictions based on 15 micron counts from ISO. We argue that this implies the existence of a previously undetected population of infrared-luminous galaxies at z ~ 1-3. Integrating the counts to 60 uJy, we derive a lower limit on the 24 micron background intensity of 1.9 +/- 0.6 nW m-2 sr-1 of which the majority (~ 60%) stems from sources fainter than 0.4 mJy. Extrapolating to fainter flux densities, sources below 60 uJy contribute 0.8 {+0.9/-0.4} nW m-2 sr-1 to the background, which provides an estimate of the total 24 micron background of 2.7 {+1.1/-0.7} nW m-2 sr-1.
149 - C. Gruppioni , F. Pozzi , C. Lari 2004
The comparison between the new Spitzer data at 24 micron and the previous ISOCAM data at 15 micron is a key tool to understand galaxy properties and evolution in the infrared and to interpret the observed number counts, since the combination of Spitz er with the ISO cosmological surveys provides for the first time the direct view of the Universe in the Infrared up to z~2. We present the prediction in the Spitzer 24-micron band of a phenomenological model for galaxy evolution derived from the 15-micron data. Without any ``a posteriori update, the model predictions seem to agree well with the recently published 24-micron extragalactic source counts, suggesting that the peak in the 24-micron counts is dominated by ``starburst galaxies like those detected by ISOCAM at 15 micron, but at higher redshifts (1 < z < 2 instead of 0.5 < z < 1.5).
We present the first galaxy counts at 18 microns using the Japanese AKARI satellites survey at the North Ecliptic Pole (NEP), produced from the images from the NEP-Deep and NEP-Wide surveys covering 0.6 and 5.8 square degrees respectively. We describ e a procedure using a point source filtering algorithm to remove background structure and a minimum variance method for our source extraction and photometry that delivers the optimum signal to noise for our extracted sources, confirming this by comparison with standard photometry methods. The final source counts are complete and reliable over three orders of magnitude in flux density, resulting in sensitivities (80 percent completeness) of 0.15mJy and 0.3mJy for the NEP-Deep and NEP-Wide surveys respectively, a factor of 1.3 deeper than previous catalogues constructed from this field. The differential source counts exhibit a characteristic upturn from Euclidean expectations at around a milliJansky and a corresponding evolutionary bump between 0.2-0.4 mJy consistent with previous mid-infrared surveys with ISO and Spitzer at 15 and 24 microns. We compare our results with galaxy evolution models confirming the striking divergence from the non-evolving scenario. The models and observations are in broad agreement implying that the source counts are consistent with a strongly evolving population of luminous infrared galaxies at redshifts higher than unity. Integrating our source counts down to the limit of the NEP survey at the 150 microJy level we calculate that AKARI has resolved approximately 55 percent of the 18 micron cosmic infrared background relative to the predictions of contemporary source count models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا