ﻻ يوجد ملخص باللغة العربية
The formation and evolution of galaxies can be followed in the context of cosmological structure formation using the technique of semi-analytic modelling. We give a brief outline of the features incorporated into the semi-analytic model of Cole etal (1999). We present two examples of model predictions that can be tested using photometric redshift techniques. The first prediction, of the star formation history of the universe, has already been shown to be in broad argeement with the observational estimates. The second prediction, of the evolution of galaxy clustering with redshift, will be addressed with some of the forthcoming deep, multi-filter imaging surveys discussed at this meeting.
The correct calculation of formation enthalpy is one of the enablers of ab-initio computational materials design. For several classes of systems (e.g. oxides) standard density functional theory produces incorrect values. Here we propose the Coordinat
We apply the quantum renormalization group to construct a holographic dual for the U(N) vector model for complex bosons defined on a lattice. The bulk geometry becomes dynamical as the hopping amplitudes which determine connectivity of space are prom
We propose a new Monte Carlo method called the pinhole trace algorithm for {it ab initio} calculations of the thermodynamics of nuclear systems. For typical simulations of interest, the computational speedup relative to conventional grand-canonical e
Any object on earth has two fundamental properties: it is finite, and it is made of atoms. Structural information about an object can be obtained from diffraction amplitude measurements that account for either one of these traits. Nyquist-sampling of
Ab initio theory describes nuclei from a fully microscopic formulation, with no presupposition of collective degrees of freedom, yet signatures of clustering and rotation nonetheless arise. We can therefore look to ab initio theory for an understandi