ترغب بنشر مسار تعليمي؟ اضغط هنا

The host galaxies of radio-quiet quasars at 0.5<z<1.0

232   0   0.0 ( 0 )
 نشر من قبل Tomi Hyvonen
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. Hyvonen




اسأل ChatGPT حول البحث

We present near-infrared H-band imaging of 15 intermediate redshift (0.5<z<1) radio quiet quasars (RQQ) in order to characterize the properties of their host galaxies. We are able to clearly detect the surrounding nebulosity in 12 objects, whereas the object remains unresolved in three cases. For all the resolved objects, we find that the host galaxy is well represented by a de Vaucouleurs r^{1/4} surface brightness law. This is the first reasonably sized sample of intermediate redshift RQQs studied in the near-infrared. The RQQ host galaxies are luminous (average M_H=-26.3+-0.6) and large giant elliptical galaxies (average bulge scale length R_e = 11.3pm5.8 kpc). RQQ hosts are about 1 mag brighter than the typical low redshift galaxy luminosity L^*, and their sizes are similar to those of galaxies hosting lower redshift RQQs, indicating that there is no significant evolution at least up to z=1 of the host galaxy structure. We also find that RQQ hosts are about 0.5-1 mag fainter than radio-loud quasars (RLQ) hosts at the similar redshift range. The comparison of the host luminosity of intermediate redshift RQQ hosts with that for lower z sources shows a trend that is consistent with that expected from the passive evolution of the stars in the host galaxies. The nuclear luminosity and the nucleus/host galaxy luminosity ratio of the objects in our sample are intermediate between those of lower redshift RQQs and those of higher redshift (z>1) RQQs.



قيم البحث

اقرأ أيضاً

We investigate the relationship between environment and galaxy evolution in the redshift range $0.5 < z < 1.0$. Galaxy overdensities are selected using a Friends-of-Friends algorithm, applied to deep photometric data in the Ultra-Deep Survey (UDS) fi eld. A study of the resulting stellar mass functions reveals clear differences between cluster and field environments, with a strong excess of low-mass rapidly quenched galaxies in cluster environments compared to the field. Cluster environments also show a corresponding deficit of young, low-mass star-forming galaxies, which show a sharp radial decline towards cluster centres. By comparing mass functions and radial distributions, we conclude that young star-forming galaxies are rapidly quenched as they enter overdense environments, becoming post-starburst galaxies before joining the red sequence. Our results also point to the existence of two environmental quenching pathways operating in galaxy clusters, operating on different timescales. Fast quenching acts on galaxies with high specific star-formation rates, operating on timescales shorter than the cluster dynamical time ($ < 1$ Gyr). In contrast, slow quenching affects galaxies with moderate specific star-formation rates, regardless of their stellar mass, and acts on longer timescales ($gtrsim 1$ Gyr). Of the cluster galaxies in the stellar mass range $9.0 < log(M_{*}/M_{odot}) < 10.5$ quenched during this epoch, we find that 73% were transformed through fast quenching, while the remaining 27% followed the slow quenching route.
56 - H.-W. Rix 1999
We present H-band observations of gravitationally lensed QSO host galaxies obtained with NICMOS on HST as part of the CfA-Arizona-Gravitational-Lens-Survey (CASTLES). The detections are greatly facilitated by the lensing magnification in these system s; we find that most hosts of radio-quiet QSOs (RQQ) at z~2 are of modest luminosity (L<L_*). They are 2-5 times fainter than the hosts of radio-loud QSOs at the same epoch. Compared to low redshifts, RQQ hosts at z~2 also support higher nuclear luminosities at given stellar host mass. This suggests that the supermassive black holes at their centers grew faster at early epochs than the stellar body of their surrounding host galaxies.
219 - E. Belsole 2006
Active galaxies are the most powerful engines in the Universe for converting gravitational energy into radiation, and radio galaxies and radio-loud quasars are highly luminous and can be detected across the Universe. The jets that characterise them n eed a medium to propagate into, and thus radio galaxies at high redshift point to gaseous atmospheres on scales of at least the radio source diameter, which in many cases can reach hundreds of kpc. The variation with redshift of X-ray properties of radio-selected clusters provides an important test of structure formation theories as, unlike X-ray selection, this selection is not biased towards the most luminous clusters in the Universe. We present new results from a sample of 19 luminous radio galaxies at redshifts between 0.5 and 1. The properties of the gaseous atmosphere around these sources as mapped by Chandra and XMM-Newton observations are discussed. By combining these with observations at radio frequency, we will be able to draw conclusions on cluster size, density, and pressure balance between the radio source and the environment in which it lies.
We present new imaging and spectroscopic observations of the fields of five QSOs with very strong intervening CaII absorption systems at redshifts z<0.5 selected from the Sloan Digital Sky Survey. Recent studies of these very rare absorbers indicate that they may be related to damped Lyman alpha systems (DLAs). In all five cases we identify a galaxy at the redshift of the CaII system with impact parameters up to ~24 kpc. In four out of five cases the galaxies are luminous (L ~L*), metal-rich (Z ~Zsun), massive (velocity dispersion, sigma ~100 km/s) spirals. Their star formation rates, deduced from Halpha emission, are high, in the range SFR = 0.3 - 30 Msun/yr. In our analysis, we paid particular attention to correcting the observed emission line fluxes for stellar absorption and dust extinction. We show that these effects are important for a correct SFR estimate; their neglect in previous low-z studies of DLA-selected galaxies has probably led to an underestimate of the star formation activity in at least some DLA hosts. We discuss possible links between CaII-selected galaxies and DLAs and outline future observations which will help clarify the relationship between these different classes of QSO absorbers.
We present the results from a study of the host galaxies of 15 optically selected AGNs with 0.5<z<1.1 from GEMS. GEMS is a Hubble Space Telescope imaging survey of a ~28x28 contiguous field centered on the Chandra Deep Field South in the F606W and F8 50LP filter bands. It incorporates the SEDs and redshifts of ~10000 objects, obtained by the COMBO-17 project. We have detected the host galaxies of all 15 AGNs in the F850LP-band (and 13/15 in the F606W-band), recovering their fluxes, morphologies and structural parameters. We find that 80% of the host galaxies have early-type (bulge-dominated) morphologies, while the rest have structures characteristic of late-type (disk-dominated) galaxies. We find that 25% of the early types, and 30% of the late types, exhibit disturbances consistent with galaxy interactions. The hosts show a wide range of colors, from those of red-sequence galaxies to blue colors consistent with ongoing star formation. Roughly 70% of the morphologically early-type hosts have rest-frame blue colors, a much larger fraction than those typical of non-active morphologically early-type galaxies in this redshift and luminosity range. Yet, we find that the early-type hosts are structurally similar to red-sequence ellipticals, inasmuch as they follow an absolute magnitude versus half-light size correlation that are consistent with the mean relation for early-type galaxies at similar redshifts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا