ﻻ يوجد ملخص باللغة العربية
Using Spitzer IRAC mid-infrared imaging from the Great Observatories Origins Deep Survey, we study z_850-dropout sources in the Hubble Ultra Deep Field. After carefully removing contaminating flux from foreground sources, we clearly detect two z_850-dropouts at 3.6 micron and 4.5 micron, while two others are marginally detected. The mid-infrared fluxes strongly support their interpretation as galaxies at z~7, seen when the Universe was only 750 Myr old. The IRAC observations allow us for the first time to constrain the rest-frame optical colors, stellar masses, and ages of the highest redshift galaxies. Fitting stellar population models to the spectral energy distributions, we find photometric redshifts in the range 6.7-7.4, rest-frame colors U-V=0.2-0.4, V-band luminosities L_V=0.6-3 x 10^10 L_sun, stellar masses 1-10 x 10^9 M_sun, stellar ages 50-200 Myr, star formation rates up to ~25 M_sun/yr, and low reddening A_V<0.4. Overall, the z=7 galaxies appear substantially less massive and evolved than Lyman break galaxies or Distant Red Galaxies at z=2-3, but fairly similar to recently identified systems at z=5-6. The stellar mass density inferred from our z=7 sample is rho* = 1.6^{+1.6}_{-0.8} x 10^6 M_sun Mpc^-3 (to 0.3 L*(z=3)), in apparent agreement with recent cosmological hydrodynamic simulations, but we note that incompleteness and sample variance may introduce larger uncertainties. The ages of the two most massive galaxies suggest they formed at z>8, during the era of cosmic reionization, but the star formation rate density derived from their stellar masses and ages is not nearly sufficient to reionize the universe. The simplest explanation for this deficiency is that lower-mass galaxies beyond our detection limit reionized the universe.
We present deep 3.6 - 8 micron imaging of the Hubble Deep Field South with IRAC on the Spitzer Space Telescope. We study Distant Red Galaxies (DRGs) at z>2 selected by Js - Ks > 2.3 and compare them to a sample of Lyman Break Galaxies (LBGs) at z=2-3
We use the new ultra-deep, near-infrared imaging of the Hubble Ultra-Deep Field (HUDF) provided by our UDF12 HST WFC3/IR campaign to explore the rest-frame UV properties of galaxies at redshifts z > 6.5. We present the first unbiased measurement of t
We identify 4 unusually bright (H < 25.5) galaxies from HST and Spitzer CANDELS data with probable redshifts z ~ 7-9. These identifications include the brightest-known galaxies to date at z > 7.5. As Y-band observations are not available over the ful
We use data from the first epoch of observations with the IRAC/Spitzer for the GOODS to detect and study a collection of LBGs at z ~ 6 to 5 in the HUDF, six of which have spectroscopic confirmation. At these redshifts, IRAC samples rest-frame optical
We present a catalog of high redshift star-forming galaxies selected to lie within the redshift range z ~ 7-8 using the Ultra Deep Field 2012 (UDF12), the deepest near-infrared (near-IR) exposures yet taken with the Hubble Space Telescope. As a resul