ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing Gaussian random hypothesis with the cosmic microwave background temperature anisotropies in the three-year WMAP data

234   0   0.0 ( 0 )
 نشر من قبل Lung-Yih Chiang
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We test the hypothesis that the temperature of the cosmic microwave background is consistent with a Gaussian random field defined on the celestial sphere, using de-biased internal linear combination (DILC) map produced from the 3-year WMAP data. We test the phases for spherical harmonic modes with l <= 10 (which should be the cleanest) for their uniformity, randomness, and correlation with those of the foreground templates. The phases themselves are consistent with a uniform distribution, but not for l <= 5, and the differences between phases are not consistent with uniformity. For l=3 and l=6, the phases of the CMB maps cross-correlate with the foregrounds, suggestion the presence of residual contamination in the DLC map even on these large scales. We also use a one-dimensional Fourier representation to assemble a_lm into the Delta T_l(phi) for each l mode, and test the positions of the resulting maxima and minima for consistency with uniformity randomness on the unit circle. The results show significant departures at the 0.5% level, with the one-dimensional peaks being concentrated around phi=180 degs. This strongly significant alignment with the Galactic meridian, together with the cross-correlation of DILC phases with the foreground maps, strongly suggests that even the lowest spherical harmonic modes in the map are significantly contaminated with foreground radiation.



قيم البحث

اقرأ أيضاً

136 - Lung-Yih Chiang 2011
Angular power spectrum of the cosmic microwave background (CMB) temperature anisotropies is one of the most important on characteristics of the Universe such as its geometry and total density. Using flat sky approximation and Fourier analysis, we est imate the angular power spectrum from an ensemble of least foreground-contaminated square patches from WMAP W and V frequency band map. This method circumvents the issue of foreground cleaning and that of breaking orthogonality in spherical harmonic analysis due to masking out the bright Galactic plane region, thereby rendering a direct measurement of the angular power spectrum. We test and confirm Gaussian statistical characteristic of the selected patches, from which the first and second acoustic peak of the power spectrum are reproduced, and the third peak is clearly visible albeit with some noise residual at the tail.
We have independently measured the genus topology of the temperature fluctuations in the cosmic microwave background seen in the Wilkinson Microwave Anisotropy Probe (WMAP) 3-year data. A genus analysis of the WMAP data indicates consistency with Gau ssian random-phase initial conditions, as predicted by standard inflation. We set 95% confidence limits on non-linearities of -101 < f_{nl} < 107. We also find that the observed low l (l <= 8) modes show a slight anti-correlation with the Galactic foreground, but not exceeding 95% confidence, and that the topology defined by these modes is consistent with that of a Gaussian random-phase distribution (within 95% confidence).
We present new full-sky temperature maps in five frequency bands from 23 to 94 GHz, based on the first three years of the WMAP sky survey. The new maps, which are consistent with the first-year maps and more sensitive, incorporate improvements in dat a processing made possible by the additional years of data and by a more complete analysis of the polarization signal. These include refinements in the gain calibration and beam response models. We employ two forms of multi-frequency analysis to separate astrophysical foreground signals from the CMB, each of which improves on our first-year analyses. First, we form an improved Internal Linear Combination map, based solely on WMAP data, by adding a bias correction step and by quantifying residual uncertainties in the resulting map. Second, we fit and subtract new spatial templates that trace Galactic emission; in particular, we now use low-frequency WMAP data to trace synchrotron emission. The WMAP point source catalog is updated to include 115 new sources. We derive the angular power spectrum of the temperature anisotropy using a hybrid approach that combines a maximum likelihood estimate at low l (large angular scales) with a quadratic cross-power estimate for l>30. Our best estimate of the CMB power spectrum is derived by averaging cross-power spectra from 153 statistically independent channel pairs. The combined spectrum is cosmic variance limited to l=400, and the signal-to-noise ratio per l-mode exceeds unity up to l=850. The first two acoustic peaks are seen at l=220.8 +- 0.7 and l=530.9 +- 3.8, respectively, while the first two troughs are seen at l=412.4 +- 1.9 and l=675.1 +- 11.1, respectively. The rise to the third peak is unambiguous; when the WMAP data are combined with higher resolution CMB measurements, the existence of a third acoustic peak is well established.
The standard inflationary model presents a simple scenario within which the homogeneity, isotropy and flatness of the universe appear as natural outcomes and, in addition, fluctuations in the energy density are originated during the inflationary phas e. These seminal density fluctuations give rise to fluctuations in the temperature of the Cosmic Microwave Background (CMB) at the decoupling surface. Afterward, the CMB photons propagate almost freely, with slight gravitational interactions with the evolving gravitational field present in the large scale structure (LSS) of the matter distribution and a low scattering rate with free electrons after the universe becomes reionized. These secondary effects slightly change the shape of the intensity and polarization angular power spectra (APS) of the radiation. The APS contain very valuable information on the parameters characterizing the background model of the universe and those parametrising the power spectra of both matter density perturbations and gravitational waves. In the last few years data from sensitive experiments have allowed a good determination of the shape of the APS, providing for the first time a model of the universe very close to spatially flat. In particular the WMAP first year data, together with other CMB data at higher resolution and other cosmological data sets, have made possible to determine the cosmological parameters with a precision of a few percent. The most striking aspect of the derived model of the universe is the unknown nature of most of its energy contents. This and other open problems in cosmology represent exciting challenges for the CMB community. The future ESA Planck mission will undoubtely shed some light on these remaining questions.
170 - C. L. Bennett 2010
(Abridged) A simple six-parameter LCDM model provides a successful fit to WMAP data, both when the data are analyzed alone and in combination with other cosmological data. Even so, it is appropriate to search for any hints of deviations from the now standard model of cosmology, which includes inflation, dark energy, dark matter, baryons, and neutrinos. The cosmological community has subjected the WMAP data to extensive and varied analyses. While there is widespread agreement as to the overall success of the six-parameter LCDM model, various anomalies have been reported relative to that model. In this paper we examine potential anomalies and present analyses and assessments of their significance. In most cases we find that claimed anomalies depend on posterior selection of some aspect or subset of the data. Compared with sky simulations based on the best fit model, one can select for low probability features of the WMAP data. Low probability features are expected, but it is not usually straightforward to determine whether any particular low probability feature is the result of the a posteriori selection or of non-standard cosmology. We examine in detail the properties of the power spectrum with respect to the LCDM model. We examine several potential or previously claimed anomalies in the sky maps and power spectra, including cold spots, low quadrupole power, quadropole-octupole alignment, hemispherical or dipole power asymmetry, and quadrupole power asymmetry. We conclude that there is no compelling evidence for deviations from the LCDM model, which is generally an acceptable statistical fit to WMAP and other cosmological data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا