ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical Properties of Radio-selected Narrow Line Seyfert 1 Galaxies

77   0   0.0 ( 0 )
 نشر من قبل Sally Laurent-Muehleisen
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. J. Whalen




اسأل ChatGPT حول البحث

We present results from the analysis of the optical spectra of 47 radio-selected narrow-line Seyfert 1 galaxies (NLS1s). These objects are a subset of the First Bright Quasar Survey (FBQS) and were initially detected at 20 cm (flux density limit ~1 mJy) in the VLA FIRST Survey. We run Spearman rank correlation tests on several sets of parameters and conclude that, except for their radio properties, radio-selected NLS1 galaxies do not exhibit significant differences from traditional NLS1 galaxies. Our results are also in agreement with previous studies suggesting that NLS1 galaxies have small black hole masses that are accreting very close to the Eddington rate. We have found 16 new radio-loud NLS1 galaxies, which increases the number of known radio-loud NLS1 galaxies by a factor of ~5.



قيم البحث

اقرأ أيضاً

Narrow line Seyfert 1 (NLSy1) galaxies constitute a class of active galactic nuclei characterized by the full width at half maximum (FWHM) of the H$beta$ broad emission line < 2000 km/s and the flux ratio of [O III] to H$beta$ < 3. Their properties a re not well understood since only a few NLSy1 galaxies were known earlier. We have studied various properties of NLSy1 galaxies using an enlarged sample and compared them with the conventional broad-line Seyfert 1 (BLSy1) galaxies. Both the sample of sources have z $le$ 0.8 and their optical spectra from SDSS-DR12 that are used to derive various physical parameters have a median signal to noise (S/N) ratio >10 per pixel. Strong correlations between the H$beta$ and H$alpha$ emission lines are found both in the FWHM and flux. The nuclear continuum luminosity is found to be strongly correlated with the luminosity of H$beta$, H$alpha$ and [O III] emission lines. The black hole mass in NLSy1 galaxies is lower compared to their broad line counterparts. Compared to BLSy1 galaxies, NLSy1 galaxies have a stronger FeII emission and a higher Eddington ratio that place them in the extreme upper right corner of the $R_{4570}$ - $xi_{Edd}$ diagram. The distribution of the radio-loudness parameter (R) in NLSy1 galaxies drops rapidly at R > 10 compared to the BLSy1 galaxies that have powerful radio jets. The soft X-ray photon index in NLSy1 galaxies is on average higher (2.9 $pm$ 0.9) than BLSy1 galaxies (2.4 $pm$ 0.8). It is anti-correlated with the H$beta$ width but correlated with the Fe II strength. NLSy1 galaxies on average have a lower amplitude of optical variability compared to their broad lines counterparts. These results suggest Eddington ratio as the main parameter that drives optical variability in these sources.
71 - Veeresh Singh , Hum Chand 2018
In recent years, several Radio-Loud Narrow-Line Seyfert 1 galaxies (RL-NLS1) possessing relativistic jets have come into attention with their detections in Very Large Baseline Array (VLBA) and in $gamma$-ray observations. In this paper we attempt to understand the nature of radio-jets in NLS1s by examining the kpc-scale radio properties of, hitherto, the largest sample of 11101 optically-selected NLS1s. Using 1.4 GHz FIRST, 1.4 GHz NVSS, 327 MHz WENNS, and 150 MHz TGSS catalogues we find the radio-detection of merely $sim$ 4.5 per cent (498/11101) NLS1s, with majority (407/498 $sim$ 81.7 per cent) of them being RL-NLS1s. Our study yields the highest number of RL-NLS1s and it can only be a lower limit. We find that the most of our radio-detected NLS1s are compact ($<$ 30 kpc), exhibit both flat as well as steep radio spectra, and are distributed across a wide range of 1.4 GHz radio luminosities (10$^{22}$ $-$ 10$^{27}$ W Hz$^{-1}$). At the high end of radio luminosity our NLS1s often tend to show blazar-like properties such as compact radio-size, flat/inverted radio spectrum, radio variability and polarization. The diagnostic plots based on the mid-IR colours suggest that the radio emission in NLS1s is mostly powered by AGN, while nuclear star-formation may have a significant contribution in NLS1s of low radio luminosities. The radio luminosity versus radio-size plot infers that the radio-jets in NLS1s are either in the early evolutionary phase or possibly remain confined within the nuclear region due to low-power or intermittent AGN activity.
154 - S. Komossa 2007
I provide a short review of the properties of Narrow-line Seyfert 1 (NLS1) galaxies across the electromagnetic spectrum and of the models to explain them. Their continuum and emission-line properties manifest one extreme form of Seyfert activity. As such, NLS1 galaxies may hold important clues to the key parameters that drive nuclear activity. Their high accretion rates close to the Eddington rate provide new insight into accretion physics, their low black hole masses and perhaps young ages allow us to address issues of black hole growth, their strong optical FeII emission places strong constraints on FeII and perhaps metal formation models and physical conditions in these emission-line clouds, and their enhanced radio quiteness permits a fresh look at causes of radio loudness and the radio-loud radio-quiet bimodality in AGN.
We have monitored the R-band optical linear polarisation of ten jetted NLSy1 galaxies with the aim to quantify their variability and search for candidate long rotation of the polarisation plane. In all cases for which adequate datasets are available we observe significant variability of both the polarisation fraction and angle. In the best-sampled cases we identify candidate long rotations of the polarisation plane. We present an approach that assesses the probability that the observed phenomenology is the result of pure noise. We conclude that although this possibility cannot be excluded it is much more likely that the EVPA undergoes an intrinsic evolution. We compute the most probable parameters of the intrinsic event which forecasts events consistent with the observations. In one case we find that the EVPA shows a preferred direction which, however, does not imply any dominance of a toroidal or poloidal component of the magnetic field at those scales.
81 - K. E. Gabanyi , A. Moor , S. Frey 2018
Most of the radio-loud narrow-line Seyfert 1 (NLS1) galaxies resemble compact steep-spectrum sources. However, the extremely radio-loud ones show blazar-like characteristics, like flat radio spectra, compact radio cores, substantial variability and h igh brightness temperatures. These objects are thought to be similar to blazars as they possess relativistic jets seen at small angle to the line of sight. This claim has been further supported by the Fermi satellite discovery of gamma-ray emission from a handful of these sources. Using the Wide-Field Infrared Survey Explorer (WISE) data, we analyzed the mid-infrared variability characteristics of $42$ radio-loud NLS1 at $3.4$ and $4.6,mu$m. We found that $27$ out of the studied $42$ sources showed variability in at least one of the two infrared bands. In some cases, significant changes in the infrared colors can alter the location of the source in the WISE color-color diagram which might lead to different classification. More than $60$% of the variable sources also showed variability within a $1-1.5$ day interval. Such short time scales argue for a compact emission region like those associated with the jets. This connection is further strengthened by the fact that the brightest $gamma$-ray emitters of the sample ($6$ sources), all showed short time scale infrared variability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا