ﻻ يوجد ملخص باللغة العربية
We have carried out a high angular resolution near-infrared imaging study of the fields of 6 quasars with 7 strong absorption line systems at z < 0.5, using the Hokupaa adaptive optics system and the QUIRC near-infrared camera on the Gemini-North telescope. These absorption systems include 4 classical damped Lyman-alpha absorbers (DLAs), 2 sub-DLAs, and one Lyman-limit system. Images were obtained in the H or K filters with FWHM between 0.2-0.5 with the goal of detecting the absorbing galaxies and identifying their morphologies. Features are seen at projected separations of 0.5-16.0 from the quasars and all of the fields show features at less than 2 separation. We find candidate absorbers in all of the seven systems. With the assumption that some of these are associated with the absorbers, the absorbers are low luminosity < 0.1 L*_H or L*_K; we do not find any large bright candidate absorbers in any of our fields. Some fields show compact features that are too faint for quantitative morphology, but could arise in dwarf galaxies.
We have obtained high signal:to:noise optical spectroscopy at 5AA resolution of 27 quasars from the APM z$>$4 quasar survey. The spectra have been analyzed to create new samples of high redshift Lyman-limit and damped Lyman-$alpha$ absorbers. These d
We report Hubble Space Telescope Cosmic Origins Spectrograph far-ultraviolet and Arecibo Telescope H{sc i} 21cm spectroscopic studies of six damped and sub-damped Lyman-$alpha$ absorbers (DLAs and sub-DLAs, respectively) at $z lesssim 0.1$, that have
Damped Lyman-alpha absorbers (DLAs), seen in absorption against a background quasar, provide the most detailed probes available of element abundances in the Universe over > 90 % of its age. DLAs can be used to observationally measure the global mean
The kinematics of damped Lyman alpha absorbers (DLAs) are difficult to reproduce in hierarchical galaxy formation models, particularly the preponderance of wide systems. We investigate DLA kinematics at z=3 using high-resolution cosmological hydrodyn
We use hydrodynamic cosmological simulations to study damped Lyman-alpha (DLA) and Lyman limit (LL) absorption at redshifts z=2-4 in five variants of the cold dark matter scenario. Our standard simulations resolve the formation of dense concentration