ﻻ يوجد ملخص باللغة العربية
We use Sloan Digital Sky Survey Data Release 2 QSO spectra to constrain the dust-reddening caused by intervening damped Lyman-alpha systems (DLAs). Comparing the spectral index distribution of a 70 sight-line DLA sample with that of a large control sample reveals no evidence for dust-reddening at z~3. Our limit on the shift in spectral index, |Delta(alpha)| < 0.19 (3-sigma), corresponds to a limit on the colour excess due to SMC-like dust-reddening, E(B-V) < 0.02 mag (3-sigma). This is inconsistent with the early studies of Fall, Pei and collaborators who used the small QSO and DLA samples available. Comparison of the DLA and control magnitude distributions also reveals >2-sigma evidence for an excess of bright and/or a deficit of faint QSOs with foreground DLAs. Higher equivalent width DLAs give a stronger signal. We interpret this as the signature of gravitational magnification due to the intervening DLAs.
We have obtained very deep near-infrared images in the fields of 10 QSOs whose spectra contain damped Lyman-alpha absorption (DLA) systems with 1.7<z_abs <2.5. The main aim of our investigation is to provide new constraints on the properties of dista
We present a sample of 33 damped Lyman alpha systems (DLAs) discovered in the Sloan Digital Sky Survey (SDSS) whose absorption redshifts (z_abs) are within 6000 km/s of the QSOs systemic redshift (z_sys). Our sample is based on 731 2.5 < z_sys < 4.5
We report evidence for a bimodality in damped Ly systems (DLAs). Using [C II] 158 mu cooling rates, lc, we find a distribution with peaks at lc=10^-27.4 and 10^-26.6 ergs s^-1 H^-1 separated by a trough at lc^crit ~= lc < 10^-27.0 ergs s^-1 H^-1. We
We have identified a metal-strong (logN(Zn+) > 13.15 or logN(Si+) > 15.95) DLA (MSDLA) population from an automated quasar (QSO) absorber search in the Sloan Digital Sky Survey Data Release 3 (SDSS-DR3) quasar sample, and find that MSDLAs comprise ~5
We have collected data for 69 Damped Lyman-alpha (DLA) systems, to investigate the chemical evolution of galaxies in the redshift interval 0.0 < z < 4.4. In doing that, we have adopted the most general approach used so far to correct for dust depleti