ﻻ يوجد ملخص باللغة العربية
Transformer-based language models such as BERT have outperformed previous models on a large number of English benchmarks, but their evaluation is often limited to English or a small number of well-resourced languages. In this work, we evaluate monolingual, multilingual, and randomly initialized language models from the BERT family on a variety of Uralic languages including Estonian, Finnish, Hungarian, Erzya, Moksha, Karelian, Livvi, Komi Permyak, Komi Zyrian, Northern Sami, and Skolt Sami. When monolingual models are available (currently only et, fi, hu), these perform better on their native language, but in general they transfer worse than multilingual models or models of genetically unrelated languages that share the same character set. Remarkably, straightforward transfer of high-resource models, even without special efforts toward hyperparameter optimization, yields what appear to be state of the art POS and NER tools for the minority Uralic languages where there is sufficient data for finetuning.
Natural language processing (NLP) tasks, ranging from text classification to text generation, have been revolutionised by the pre-trained language models, such as BERT. This allows corporations to easily build powerful APIs by encapsulating fine-tune
Recent advances in large-scale language representation models such as BERT have improved the state-of-the-art performances in many NLP tasks. Meanwhile, character-level Chinese NLP models, including BERT for Chinese, have also demonstrated that they
Multilingual BERT (mBERT) trained on 104 languages has shown surprisingly good cross-lingual performance on several NLP tasks, even without explicit cross-lingual signals. However, these evaluations have focused on cross-lingual transfer with high-re
Despite the increasing number of large and comprehensive machine translation (MT) systems, evaluation of these methods in various languages has been restrained by the lack of high-quality parallel corpora as well as engagement with the people that sp
Pretrained multilingual models are able to perform cross-lingual transfer in a zero-shot setting, even for languages unseen during pretraining. However, prior work evaluating performance on unseen languages has largely been limited to low-level, synt