ﻻ يوجد ملخص باللغة العربية
Building fair machine learning models becomes more and more important. As many powerful models are built by collaboration among multiple parties, each holding some sensitive data, it is natural to explore the feasibility of training fair models in cross-silo federated learning so that fairness, privacy and collaboration can be fully respected simultaneously. However, it is a very challenging task, since it is far from trivial to accurately estimate the fairness of a model without knowing the private data of the participating parties. In this paper, we first propose a federated estimation method to accurately estimate the fairness of a model without infringing the data privacy of any party. Then, we use the fairness estimation to formulate a novel problem of training fair models in cross-silo federated learning. We develop FedFair, a well-designed federated learning framework, which can successfully train a fair model with high performance without any data privacy infringement. Our extensive experiments on three real-world data sets demonstrate the excellent fair model training performance of our method.
Federated Learning (FL) provides both model performance and data privacy for machine learning tasks where samples or features are distributed among different parties. In the training process of FL, no party has a global view of data distributions or
We consider federated learning in tiered communication networks. Our network model consists of a set of silos, each holding a vertical partition of the data. Each silo contains a hub and a set of clients, with the silos vertical data shard partitione
Data sharing remains a major hindering factor when it comes to adopting emerging AI technologies in general, but particularly in the agri-food sector. Protectiveness of data is natural in this setting; data is a precious commodity for data owners, wh
Federated learning (FL) has gain growing interests for its capability of learning from distributed data sources collectively without the need of accessing the raw data samples across different sources. So far FL research has mostly focused on improvi
Homomorphic encryption (HE) is a promising privacy-preserving technique for cross-silo federated learning (FL), where organizations perform collaborative model training on decentralized data. Despite the strong privacy guarantee, general HE schemes r