ﻻ يوجد ملخص باللغة العربية
When a sufficiently large far-field training data is presented, jointly optimizing a multichannel frontend and an end-to-end (E2E) Automatic Speech Recognition (ASR) backend shows promising results. Recent literature has shown traditional beamformer designs, such as MVDR (Minimum Variance Distortionless Response) or fixed beamformers can be successfully integrated as the frontend into an E2E ASR system with learnable parameters. In this work, we propose the self-attention channel combinator (SACC) ASR frontend, which leverages the self-attention mechanism to combine multichannel audio signals in the magnitude spectral domain. Experiments conducted on a multichannel playback test data shows that the SACC achieved a 9.3% WERR compared to a state-of-the-art fixed beamformer-based frontend, both jointly optimized with a ContextNet-based ASR backend. We also demonstrate the connection between the SACC and the traditional beamformers, and analyze the intermediate outputs of the SACC.
End-to-end speech recognition has become popular in recent years, since it can integrate the acoustic, pronunciation and language models into a single neural network. Among end-to-end approaches, attention-based methods have emerged as being superior
Recurrent neural network transducers (RNN-T) have been successfully applied in end-to-end speech recognition. However, the recurrent structure makes it difficult for parallelization . In this paper, we propose a self-attention transducer (SA-T) for s
Recently, streaming end-to-end automatic speech recognition (E2E-ASR) has gained more and more attention. Many efforts have been paid to turn the non-streaming attention-based E2E-ASR system into streaming architecture. In this work, we propose a nov
Many of the current state-of-the-art Large Vocabulary Continuous Speech Recognition Systems (LVCSR) are hybrids of neural networks and Hidden Markov Models (HMMs). Most of these systems contain separate components that deal with the acoustic modellin
Recently, end-to-end sequence-to-sequence models for speech recognition have gained significant interest in the research community. While previous architecture choices revolve around time-delay neural networks (TDNN) and long short-term memory (LSTM)