ترغب بنشر مسار تعليمي؟ اضغط هنا

Convergence Analysis for the PINNs

64   0   0.0 ( 0 )
 نشر من قبل Yuling Jiao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In recent years, physical informed neural networks (PINNs) have been shown to be a powerful tool for solving PDEs empirically. However, numerical analysis of PINNs is still missing. In this paper, we prove the convergence rate to PINNs for the second order elliptic equations with Dirichlet boundary condition, by establishing the upper bounds on the number of training samples, depth and width of the deep neural networks to achieve desired accuracy. The error of PINNs is decomposed into approximation error and statistical error, where the approximation error is given in $C^2$ norm with $mathrm{ReLU}^{3}$ networks, the statistical error is estimated by Rademacher complexity. We derive the bound on the Rademacher complexity of the non-Lipschitz composition of gradient norm with $mathrm{ReLU}^{3}$ network, which is of immense independent interest.



قيم البحث

اقرأ أيضاً

Using deep neural networks to solve PDEs has attracted a lot of attentions recently. However, why the deep learning method works is falling far behind its empirical success. In this paper, we provide a rigorous numerical analysis on deep Ritz method (DRM) cite{wan11} for second order elliptic equations with Neumann boundary conditions. We establish the first nonasymptotic convergence rate in $H^1$ norm for DRM using deep networks with $mathrm{ReLU}^2$ activation functions. In addition to providing a theoretical justification of DRM, our study also shed light on how to set the hyper-parameter of depth and width to achieve the desired convergence rate in terms of number of training samples. Technically, we derive bounds on the approximation error of deep $mathrm{ReLU}^2$ network in $H^1$ norm and on the Rademacher complexity of the non-Lipschitz composition of gradient norm and $mathrm{ReLU}^2$ network, both of which are of independent interest.
A study is presented on the convergence of the computation of coupled advection-diffusion-reaction equations. In the computation, the equations with different coefficients and even types are assigned in two subdomains, and Schwarz iteration is made b etween the equations when marching from a time level to the next one. The analysis starts with the linear systems resulting from the full discretization of the equations by explicit schemes. Conditions for convergence are derived, and its speedup and the effects of difference in the equations are discussed. Then, it proceeds to an implicit scheme, and a recursive expression for convergence speed is derived. An optimal interface condition for the Schwarz iteration is obtained, and it leads to perfect convergence, that is, convergence within two times of iteration. Furthermore, the methods and analyses are extended to the coupling of the viscous Burgers equations. Numerical experiments indicate that the conclusions, such as the perfect convergence, drawn in the linear situations may remain in the Burgers equations computation.
Finite element methods for symmetric linear hyperbolic systems using unstructured advancing fronts (satisfying a causality condition) are considered in this work. Convergence results and error bounds are obtained for mapped tent pitching schemes made with standard discontinuous Galerkin discretizations for spatial approximation on mapped tents. Techniques to study semidiscretization on mapped tents, design fully discrete schemes, prove local error bounds, prove stability on spacetime fronts, and bound error propagated through unstructured layers are developed.
This paper presents and analyzes an immersed finite element (IFE) method for solving Stokes interface problems with a piecewise constant viscosity coefficient that has a jump across the interface. In the method, the triangulation does not need to fit the interface and the IFE spaces are constructed from the traditional $CR$-$P_0$ element with modifications near the interface according to the interface jump conditions. We prove that the IFE basis functions are unisolvent on arbitrary interface elements and the IFE spaces have the optimal approximation capabilities, although the proof is challenging due to the coupling of the velocity and the pressure. The stability and the optimal error estimates of the proposed IFE method are also derived rigorously. The constants in the error estimates are shown to be independent of the interface location relative to the triangulation. Numerical examples are provided to verify the theoretical results.
116 - Zhiyan Ding , Qin Li 2019
Ensemble Kalman Sampler (EKS) is a method to find approximately $i.i.d.$ samples from a target distribution. As of today, why the algorithm works and how it converges is mostly unknown. The continuous version of the algorithm is a set of coupled stoc hastic differential equations (SDEs). In this paper, we prove the wellposedness of the SDE system, justify its mean-field limit is a Fokker-Planck equation, whose long time equilibrium is the target distribution. We further demonstrate that the convergence rate is near-optimal ($J^{-1/2}$, with $J$ being the number of particles). These results, combined with the in-time convergence of the Fokker-Planck equation to its equilibrium, justify the validity of EKS, and provide the convergence rate as a sampling method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا