ﻻ يوجد ملخص باللغة العربية
Active galactic nucleus (AGN) feedback from accreting supermassive black holes (SMBHs) is an essential ingredient of galaxy formation simulations. The orbital evolution of SMBHs is affected by dynamical friction that cannot be predicted self-consistently by contemporary simulations of galaxy formation in representative volumes. Instead, such simulations typically use a simple repositioning of SMBHs, but the effects of this approach on SMBH and galaxy properties have not yet been investigated systematically. Based on a suite of smoothed particle hydrodynamics simulations with the SWIFT code and a Bondi-Hoyle-Lyttleton subgrid gas accretion model, we investigate the impact of repositioning on SMBH growth and on other baryonic components through AGN feedback. Across at least a factor ~1000 in mass resolution, SMBH repositioning (or an equivalent approach) is a necessary prerequisite for AGN feedback; without it, black hole growth is negligible. Limiting the effective repositioning speed to $lesssim$ 10 km/s delays the onset of AGN feedback and severely limits its impact on stellar mass growth in the centre of massive galaxies. Repositioning has three direct physical consequences. It promotes SMBH mergers and thus accelerates their initial growth. In addition, it raises the peak density of the ambient gas and reduces the SMBH velocity relative to it, giving a combined boost to the accretion rate that can reach many orders of magnitude. Our results suggest that a more sophisticated and/or better calibrated treatment of SMBH repositioning is a critical step towards more predictive galaxy formation simulations.
The binding energy liberated by the coalescence of supermassive black hole (SMBH) binaries during galaxy mergers is thought to be responsible for the low density cores often found in bright elliptical galaxies. We use high-resolution $N$-body and Mon
The co-evolution of supermassive black holes (SMBHs) with their host galaxies remains to be fully explored, especially at high redshift. While often understood as a consequence of self-regulation via AGN feedback, it may also be explained by alternat
We present results from a subset of simulations from the Evolution and Assembly of GaLaxies and their Environments (EAGLE) suite in which the formulation of the hydrodynamics scheme is varied. We compare simulations that use the same subgrid models w
Feedback from energy liberated by gas accretion onto black holes (BHs) is an attractive mechanism to explain the exponential cut-off at the massive end of the galaxy stellar mass function (SMF). Semi-analytic models of galaxy formation in which this
Over the last decades, cosmological simulations of galaxy formation have been instrumental for advancing our understanding of structure and galaxy formation in the Universe. These simulations follow the non-linear evolution of galaxies modeling a var