RF-LighGBM: A probabilistic ensemble way to predict customer repurchase behaviour in community e-commerce


الملخص بالإنكليزية

It is reported that the number of online payment users in China has reached 854 million; with the emergence of community e-commerce platforms, the trend of integration of e-commerce and social applications is increasingly intense. Community e-commerce is not a mature and sound comprehensive e-commerce with fewer categories and low brand value. To effectively retain community users and fully explore customer value has become an important challenge for community e-commerce operators. Given the above problems, this paper uses the data-driven method to study the prediction of community e-commerce customers repurchase behaviour. The main research contents include 1. Given the complex problem of feature engineering, the classic model RFM in the field of customer relationship management is improved, and an improved model is proposed to describe the characteristics of customer buying behaviour, which includes five indicators. 2. In view of the imbalance of machine learning training samples in SMOTE-ENN, a training sample balance using SMOTE-ENN is proposed. The experimental results show that the machine learning model can be trained more effectively on balanced samples. 3. Aiming at the complexity of the parameter adjustment process, an automatic hyperparameter optimization method based on the TPE method was proposed. Compared with other methods, the models prediction performance is improved, and the training time is reduced by more than 450%. 4. Aiming at the weak prediction ability of a single model, the soft voting based RF-LightgBM model was proposed. The experimental results show that the RF-LighTGBM model proposed in this paper can effectively predict customer repurchase behaviour, and the F1 value is 0.859, which is better than the single model and previous research results.

تحميل البحث