ﻻ يوجد ملخص باللغة العربية
Fascinating new phases of matter can emerge from strong electron interactions in solids. In recent years, a new exotic class of many-body phases, described by generalized electromagnetism of symmetric rank-2 electric and magnetic fields and immobile charge excitations dubbed fractons, has attracted wide attention. Beside interesting properties in their own right, they are also closely related to gapped fracton quantum orders, new phases of dipole-coversing systems, quantum information, and quantum gravity. However, experimental realization of the rank-2 U(1) gauge theory is still absent, and even known practical experimental routes are scarce. In this work we propose a scheme of coupled optical phonons and nematics as well as several of its concrete experimental constructions. They can realize the electrostatics sector of the rank-2 U(1) gauge theory. A great advantage of our scheme is that it requires only basic ingredients of phonon and nematic physics, hence can be applied to a wide range of nematic matters from liquid crystals to electron orbitals. We expect this work will provide crucial guidance for the realization of rank-2 U(1) and fracton states of matter on a variety of platforms.
The generalization of the Nelson-Halperin-Young theory of 2D melting to the dynamical 2+1D quantum case is presented. The bosonic quantum crystal dualizes in superfluids or superconductors exhibiting nematic liquid crystalline orders, corresponding w
We show how U(1) lattice gauge theories display key signatures of ergodicity breaking in the presence of a random charge background. Contrary to the widely studied case of spin models, in the presence of Coulomb interactions, the spectral properties
The spin-orbit entangled (SOE) Jeff-state has been a fertile ground to study novel quantum phenomena. Contrary to the conventional weakly correlated Jeff=1/2 state of 4d and 5d transition metal compounds, the ground state of CuAl2O4 hosts a Jeff=1/2
Nematic phases, breaking spontaneously rotational symmetry, provide for ubiquitously observed states of matter in both classical and quantum systems. These nematic states may be further classified by their $N$--fold rotational invariance described by
Novel electronic states resulting from entangled spin and orbital degrees of freedom are hallmarks of strongly correlated f-electron systems. A spectacular example is the so-called hidden-order phase transition in the heavy-electron metal URu2Si2, wh