ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Bayesian Image Set Classification: A Defence Approach against Adversarial Attacks

114   0   0.0 ( 0 )
 نشر من قبل Nima Mirnateghi
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep learning has become an integral part of various computer vision systems in recent years due to its outstanding achievements for object recognition, facial recognition, and scene understanding. However, deep neural networks (DNNs) are susceptible to be fooled with nearly high confidence by an adversary. In practice, the vulnerability of deep learning systems against carefully perturbed images, known as adversarial examples, poses a dire security threat in the physical world applications. To address this phenomenon, we present, what to our knowledge, is the first ever image set based adversarial defence approach. Image set classification has shown an exceptional performance for object and face recognition, owing to its intrinsic property of handling appearance variability. We propose a robust deep Bayesian image set classification as a defence framework against a broad range of adversarial attacks. We extensively experiment the performance of the proposed technique with several voting strategies. We further analyse the effects of image size, perturbation magnitude, along with the ratio of perturbed images in each image set. We also evaluate our technique with the recent state-of-the-art defence methods, and single-shot recognition task. The empirical results demonstrate superior performance on CIFAR-10, MNIST, ETH-80, and Tiny ImageNet datasets.



قيم البحث

اقرأ أيضاً

152 - Ali Borji 2020
Humans rely heavily on shape information to recognize objects. Conversely, convolutional neural networks (CNNs) are biased more towards texture. This is perhaps the main reason why CNNs are vulnerable to adversarial examples. Here, we explore how sha pe bias can be incorporated into CNNs to improve their robustness. Two algorithms are proposed, based on the observation that edges are invariant to moderate imperceptible perturbations. In the first one, a classifier is adversarially trained on images with the edge map as an additional channel. At inference time, the edge map is recomputed and concatenated to the image. In the second algorithm, a conditional GAN is trained to translate the edge maps, from clean and/or perturbed images, into clean images. Inference is done over the generated image corresponding to the inputs edge map. Extensive experiments over 10 datasets demonstrate the effectiveness of the proposed algorithms against FGSM and $ell_infty$ PGD-40 attacks. Further, we show that a) edge information can also benefit other adversarial training methods, and b) CNNs trained on edge-augmented inputs are more robust against natural image corruptions such as motion blur, impulse noise and JPEG compression, than CNNs trained solely on RGB images. From a broader perspective, our study suggests that CNNs do not adequately account for image structures that are crucial for robustness. Code is available at:~url{https://github.com/aliborji/Shapedefence.git}.
Adversarial audio attacks can be considered as a small perturbation unperceptive to human ears that is intentionally added to the audio signal and causes a machine learning model to make mistakes. This poses a security concern about the safety of mac hine learning models since the adversarial attacks can fool such models toward the wrong predictions. In this paper we first review some strong adversarial attacks that may affect both audio signals and their 2D representations and evaluate the resiliency of the most common machine learning model, namely deep learning models and support vector machines (SVM) trained on 2D audio representations such as short time Fourier transform (STFT), discrete wavelet transform (DWT) and cross recurrent plot (CRP) against several state-of-the-art adversarial attacks. Next, we propose a novel approach based on pre-processed DWT representation of audio signals and SVM to secure audio systems against adversarial attacks. The proposed architecture has several preprocessing modules for generating and enhancing spectrograms including dimension reduction and smoothing. We extract features from small patches of the spectrograms using speeded up robust feature (SURF) algorithm which are further used to generate a codebook using the K-Means++ algorithm. Finally, codewords are used to train a SVM on the codebook of the SURF-generated vectors. All these steps yield to a novel approach for audio classification that provides a good trade-off between accuracy and resilience. Experimental results on three environmental sound datasets show the competitive performance of proposed approach compared to the deep neural networks both in terms of accuracy and robustness against strong adversarial attacks.
We study the problem of defending deep neural network approaches for image classification from physically realizable attacks. First, we demonstrate that the two most scalable and effective methods for learning robust models, adversarial training with PGD attacks and randomized smoothing, exhibit very limited effectiveness against three of the highest profile physical attacks. Next, we propose a new abstract adversarial model, rectangular occlusion attacks, in which an adversary places a small adversarially crafted rectangle in an image, and develop two approaches for efficiently computing the resulting adversarial examples. Finally, we demonstrate that adversarial training using our new attack yields image classification models that exhibit high robustness against the physically realizable attacks we study, offering the first effective generic defense against such attacks.
We provide a robust defence to adversarial attacks on discriminative algorithms. Neural networks are naturally vulnerable to small, tailored perturbations in the input data that lead to wrong predictions. On the contrary, generative models attempt to learn the distribution underlying a dataset, making them inherently more robust to small perturbations. We use Boltzmann machines for discrimination purposes as attack-resistant classifiers, and compare them against standard state-of-the-art adversarial defences. We find improvements ranging from 5% to 72% against attacks with Boltzmann machines on the MNIST dataset. We furthermore complement the training with quantum-enhanced sampling from the D-Wave 2000Q annealer, finding results comparable with classical techniques and with marginal improvements in some cases. These results underline the relevance of probabilistic methods in constructing neural networks and highlight a novel scenario of practical relevance where quantum computers, even with limited hardware capabilites, could provide advantages over classical computers. This work is dedicated to the memory of Peter Wittek.
The field of computer vision has witnessed phenomenal progress in recent years partially due to the development of deep convolutional neural networks. However, deep learning models are notoriously sensitive to adversarial examples which are synthesiz ed by adding quasi-perceptible noises on real images. Some existing defense methods require to re-train attacked target networks and augment the train set via known adversarial attacks, which is inefficient and might be unpromising with unknown attack types. To overcome the above issues, we propose a portable defense method, online alternate generator, which does not need to access or modify the parameters of the target networks. The proposed method works by online synthesizing another image from scratch for an input image, instead of removing or destroying adversarial noises. To avoid pretrained parameters exploited by attackers, we alternately update the generator and the synthesized image at the inference stage. Experimental results demonstrate that the proposed defensive scheme and method outperforms a series of state-of-the-art defending models against gray-box adversarial attacks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا