ﻻ يوجد ملخص باللغة العربية
Sign Language Recognition (SLR) is a challenging research area in computer vision. To tackle the annotation bottleneck in SLR, we formulate the problem of Zero-Shot Sign Language Recognition (ZS-SLR) and propose a two-stream model from two input modalities: RGB and Depth videos. To benefit from the vision Transformer capabilities, we use two vision Transformer models, for human detection and visual features representation. We configure a transformer encoder-decoder architecture, as a fast and accurate human detection model, to overcome the challenges of the current human detection models. Considering the human keypoints, the detected human body is segmented into nine parts. A spatio-temporal representation from human body is obtained using a vision Transformer and a LSTM network. A semantic space maps the visual features to the lingual embedding of the class labels via a Bidirectional Encoder Representations from Transformers (BERT) model. We evaluated the proposed model on four datasets, Montalbano II, MSR Daily Activity 3D, CAD-60, and NTU-60, obtaining state-of-the-art results compared to state-of-the-art ZS-SLR models.
Zero-Shot Learning (ZSL) has rapidly advanced in recent years. Towards overcoming the annotation bottleneck in the Sign Language Recognition (SLR), we explore the idea of Zero-Shot Sign Language Recognition (ZS-SLR) with no annotated visual examples,
This paper presents a system which can recognise hand poses & gestures from the Indian Sign Language (ISL) in real-time using grid-based features. This system attempts to bridge the communication gap between the hearing and speech impaired and the re
Vision-based Continuous Sign Language Recognition (CSLR) aims to recognize unsegmented signs from image streams. Overfitting is one of the most critical problems in CSLR training, and previous works show that the iterative training scheme can partial
Word-level sign language recognition (WSLR) is a fundamental task in sign language interpretation. It requires models to recognize isolated sign words from videos. However, annotating WSLR data needs expert knowledge, thus limiting WSLR dataset acqui
Vision-based sign language recognition aims at helping deaf people to communicate with others. However, most existing sign language datasets are limited to a small number of words. Due to the limited vocabulary size, models learned from those dataset