ﻻ يوجد ملخص باللغة العربية
Different from visible cameras which record intensity images frame by frame, the biologically inspired event camera produces a stream of asynchronous and sparse events with much lower latency. In practice, the visible cameras can better perceive texture details and slow motion, while event cameras can be free from motion blurs and have a larger dynamic range which enables them to work well under fast motion and low illumination. Therefore, the two sensors can cooperate with each other to achieve more reliable object tracking. In this work, we propose a large-scale Visible-Event benchmark (termed VisEvent) due to the lack of a realistic and scaled dataset for this task. Our dataset consists of 820 video pairs captured under low illumination, high speed, and background clutter scenarios, and it is divided into a training and a testing subset, each of which contains 500 and 320 videos, respectively. Based on VisEvent, we transform the event flows into event images and construct more than 30 baseline methods by extending current single-modality trackers into dual-modalit
In this paper, we focus on the multi-object tracking (MOT) problem of automatic driving and robot navigation. Most existing MOT methods track multiple objects using a singular RGB camera, which are prone to camera field-of-view and suffer tracking fa
This paper presents a long-term object tracking framework with a moving event camera under general tracking conditions. A first of its kind for these revolutionary cameras, the tracking framework uses a discriminative representation for the object wi
Event cameras, which are asynchronous bio-inspired vision sensors, have shown great potential in a variety of situations, such as fast motion and low illumination scenes. However, most of the event-based object tracking methods are designed for scena
Online video object segmentation is a challenging task as it entails to process the image sequence timely and accurately. To segment a target object through the video, numerous CNN-based methods have been developed by heavily finetuning on the object
Motion blur caused by the moving of the object or camera during the exposure can be a key challenge for visual object tracking, affecting tracking accuracy significantly. In this work, we explore the robustness of visual object trackers against motio