ﻻ يوجد ملخص باللغة العربية
To fully constrain the orbits of low mass circumstellar companions, we conduct combined analyses of the radial velocity data as well as the Gaia and Hipparcos astrometric data for eight nearby systems. Our study shows that companion-induced position and proper motion differences between Gaia and Hipparcos are significant enough to constrain orbits of low mass companions to a precision comparable with previous combined analyses of direct imaging and radial velocity data. We find that our method is robust to whether we use Gaia DR2 or Gaia EDR3, as well as whether we use all of the data, or just proper motion differences. In particular, we fully characterize the orbits of HD 190360 b and HD 16160 C for the first time. With a mass of 1.8$pm$0.2$m_{rm Jup}$ and an effective temperature of 123-176 K and orbiting around a Sun-like star, HD 190360 b is the smallest Jupiter-like planet with well-constrained mass and orbit, belonging to a small sample of fully characterized Jupiter analogs. It is separated from its primary star by 0.25$$ and thus may be suitable for direct imaging by the CGI instrument of the Roman Space Telescope.
The extensive timespan of modern radial velocity surveys have made the discovery of long-period substellar companions more common in recent years, however measuring the true masses of these objects remains challenging. Astrometry from the Gaia missio
We report the detections of substellar companions orbiting around seven evolved intermediate-mass stars from precise Doppler measurements at Okayama Astrophysical Observatory. o UMa (G4 II-III) is a giant with a mass of 3.1 M_sun and hosts a planet w
We measure dynamical masses for five objects--three ultracool dwarfs, one low-mass star, and one white dwarf--by fitting orbits to a combination of the Hipparcos-Gaia Catalog of Accelerations, literature radial velocities, and relative astrometry. Ou
We present optical and near-infrared adaptive optics (AO) imaging and spectroscopy of 13 ultracool (>M6) companions to late-type stars (K7-M4.5), most of which have recently been identified as candidate members of nearby young moving groups (YMGs; 8-
$epsilon$~Eridani is a young planetary system hosting a complex multi-belt debris disk and a confirmed Jupiter-like planet orbiting at 3.48 AU from its host star. Its age and architecture are thus reminiscent of the early Solar System. The most recen