ﻻ يوجد ملخص باللغة العربية
In this work we propose a new biophysical computational model of brain regions relevant to Parkinsons Disease based on local field potential data collected from the brain of marmoset monkeys. Parkinsons disease is a neurodegenerative disorder, linked to the death of dopaminergic neurons at the substantia nigra pars compacta, which affects the normal dynamics of the basal ganglia-thalamus-cortex neuronal circuit of the brain. Although there are multiple mechanisms underlying the disease, a complete description of those mechanisms and molecular pathogenesis are still missing, and there is still no cure. To address this gap, computational models that resemble neurobiological aspects found in animal models have been proposed. In our model, we performed a data-driven approach in which a set of biologically constrained parameters is optimised using differential evolution. Evolved models successfully resembled single-neuron mean firing rates and spectral signatures of local field potentials from healthy and parkinsonian marmoset brain data. As far as we are concerned, this is the first computational model of Parkinsons Disease based on simultaneous electrophysiological recordings from seven brain regions of Marmoset monkeys. Results show that the proposed model could facilitate the investigation of the mechanisms of PD and support the development of techniques that can indicate new therapies. It could also be applied to other computational neuroscience problems in which biological data could be used to fit multi-scale models of brain circuits.
Scientific studies of consciousness rely on objects whose existence is assumed to be independent of any consciousness. On the contrary, we assume consciousness to be fundamental, and that one of the main features of consciousness is characterized as
Alzheimers disease (AD) and Parkinsons disease (PD) are the two most common neurodegenerative disorders in humans. Because a significant percentage of patients have clinical and pathological features of both diseases, it has been hypothesized that th
The deep neural nets of modern artificial intelligence (AI) have not achieved defining features of biological intelligence, including abstraction, causal learning, and energy-efficiency. While scaling to larger models has delivered performance improv
Currently, many studies of Alzheimers disease (AD) are investigating the neurobiological factors behind the acquisition of beta-amyloid (A), pathologic tau (T), and neurodegeneration ([N]) biomarkers from neuroimages. However, a system-level mechanis
One major challenge in the medication of Parkinsons disease is that the severity of the disease, reflected in the patients motor state, cannot be measured using accessible biomarkers. Therefore, we develop and examine a variety of statistical models