ﻻ يوجد ملخص باللغة العربية
The surrogate model-based uncertainty quantification method has drawn a lot of attention in recent years. Both the polynomial chaos expansion (PCE) and the deep learning (DL) are powerful methods for building a surrogate model. However, the PCE needs to increase the expansion order to improve the accuracy of the surrogate model, which causes more labeled data to solve the expansion coefficients, and the DL also needs a lot of labeled data to train the neural network model. This paper proposes a deep arbitrary polynomial chaos expansion (Deep aPCE) method to improve the balance between surrogate model accuracy and training data cost. On the one hand, the multilayer perceptron (MLP) model is used to solve the adaptive expansion coefficients of arbitrary polynomial chaos expansion, which can improve the Deep aPCE model accuracy with lower expansion order. On the other hand, the adaptive arbitrary polynomial chaos expansions properties are used to construct the MLP training cost function based on only a small amount of labeled data and a large scale of non-labeled data, which can significantly reduce the training data cost. Four numerical examples and an actual engineering problem are used to verify the effectiveness of the Deep aPCE method.
Polynomial chaos expansions (PCEs) have been used in many real-world engineering applications to quantify how the uncertainty of an output is propagated from inputs. PCEs for models with independent inputs have been extensively explored in the litera
Uncertainties exist in both physics-based and data-driven models. Variance-based sensitivity analysis characterizes how the variance of a model output is propagated from the model inputs. The Sobol index is one of the most widely used sensitivity ind
Equation learning aims to infer differential equation models from data. While a number of studies have shown that differential equation models can be successfully identified when the data are sufficiently detailed and corrupted with relatively small
In the political decision process and control of COVID-19 (and other epidemic diseases), mathematical models play an important role. It is crucial to understand and quantify the uncertainty in models and their predictions in order to take the right d
We introduce PoCET: a free and open-scource Polynomial Chaos Expansion Toolbox for Matlab, featuring the automatic generation of polynomial chaos expansion (PCE) for linear and nonlinear dynamic systems with time-invariant stochastic parameters or in