ﻻ يوجد ملخص باللغة العربية
For a collection of papers in memory of Elwyn Berlekamp (1940-2019), John Conway (1937-2020), and Richard Guy (1916-2020). The Sprague-Grundy theory for finite games without cycles was extended to general finite games by Cedric Smith and by Aviezri Fraenkel and coauthors. We observe that the same framework used to classify finite games also covers the case of locally finite games (that is, games where any position has only finitely many options). In particular, any locally finite game is equivalent to some finite game. We then study cases where the directed graph of a game is chosen randomly, and is given by the tree of a Galton-Watson branching process. Natural families of offspring distributions display a surprisingly wide range of behaviour. The setting shows a nice interplay between ideas from combinatorial game theory and ideas from probability.
We analyze the Sprague-Grundy functions for a class of almost disjoint selective compound games played on Nim heaps. Surprisingly, we find that these functions behave chaotically for smaller Sprague-Grundy values of each component game yet predictably when any one heap is sufficiently large.
The concept of nimbers--a.k.a. Grundy-values or nim-values--is fundamental to combinatorial game theory. Nimbers provide a complete characterization of strategic interactions among impartial games in their disjunctive sums as well as the winnability.
We present a bijection between some quadrangular dissections of an hexagon and unrooted binary trees, with interesting consequences for enumeration, mesh compression and graph sampling. Our bijection yields an efficient uniform random sampler for 3-c
We consider the localization game played on graphs in which a cop tries to determine the exact location of an invisible robber by exploiting distance probes. The corresponding graph parameter $zeta(G)$ for a given graph $G$ is called the localization
In this note, we present a compatibility test based on John Nashs game-theoretic notion of equilibrium strategy. The test must be taken separately by both partners, making it difficult for either partner alone to control the outcome. The mathematics