ﻻ يوجد ملخص باللغة العربية
We apply virtual localization to the problem of finding blowup formulae for virtual sheaf-theoretic invariants on a smooth projective surface. This leads to a general procedure that can be used to express virtual enumerative invariants on the blowup in terms of those on the original surface. We use an enhanced master space construction over the moduli spaces of $m$-stable sheaves introduced by Nakajima and Yoshioka. Our work extends their analogous results for the equivariant moduli spaces of framed sheaves on $mathbb{P}^2$. In contrast to their work, we make no use of GIT methods and work with an arbitrary smooth complex projective surface, assuming only the absence of strictly semistable sheaves. The main examples to keep in mind are Mochizukis virtual analogue of the Donaldson invariant and the virtual $chi_y$-genus of the moduli space of Gieseker semistable sheaves on the surface.
The surfaces considered are real, rational and have a unique smooth real $(-2)$-curve. Their canonical class $K$ is strictly negative on any other irreducible curve in the surface and $K^2>0$. For surfaces satisfying these assumptions, we suggest a c
We propose a definition of Vafa-Witten invariants counting semistable Higgs pairs on a polarised surface. We use virtual localisation applied to Mochizuki/Joyce-Song pairs. For $K_Sle0$ we expect our definition coincides with an alternative definit
We construct a compactification $M^{mu ss}$ of the Uhlenbeck-Donaldson type for the moduli space of slope stable framed bundles. This is a kind of a moduli space of slope semistable framed sheaves. We show that there exists a projective morphism $gam
We initiate the study of random iteration of automorphisms of real and complex projective surfaces, or more generally compact K{a}hler surfaces, focusing on the fundamental problem of classification of stationary measures. We show that, in a number o
In this paper, we will give a precise formula to compute delta invariants of projective bundles and projective cones of Fano type.