ﻻ يوجد ملخص باللغة العربية
The Fourier transform spectrometer (FTS) is a core instrument for solar observation with high spectral resolution, especially in the infrared. The Infrared System for the Accurate Measurement of Solar Magnetic Field (AIMS), working at 10-13 $mu m$, will use a FTS to observe the solar spectrum. The Bruker IFS-125HR, which meets the spectral resolution requirement of AIMS but just equips with a point source detector, is employed to carry out preliminary experiment for AIMS. A sun-light feeding experimental system is further developed. Several experiments are taken with them during 2018 and 2019 to observe the solar spectrum in the visible and near infrared wavelength, respectively. We also proposed an inversion method to retrieve the solar spectrum from the observed interferogram and compared it with the standard solar spectrum atlas. Although there is a wavelength limitation due to the present sun-light feeding system, the results in the wavelength band from 0.45-1.0 $mu m$ and 1.0-2.2 $mu m$ show a good consistence with the solar spectrum atlas, indicating the validity of our observing configuration, the data analysis method and the potential to work in longer wavelength. The work provided valuable experience for the AIMS not only for the operation of a FTS but also for the development of its scientific data processing software.
We present the development and performance of a Fourier transformation (FT) based Raman spectrometer working with visible laser (532 nm) excitation. It is generally thought that FT-Raman spectrometers are not viable in the visible range where shot-no
Metis is the first solar coronagraph designed for a space mission capable of performing simultaneous imaging of the off-limb solar corona in both visible and UV light. The observations obtained with Metis aboard the Solar Orbiter ESA-NASA observatory
The Far-Infrared Surveyor (FIS) onboard the AKARI satellite has a spectroscopic capability provided by a Fourier transform spectrometer (FIS-FTS). FIS-FTS is the first space-borne imaging FTS dedicated to far-infrared astronomical observations. We de
The Multi-slit Solar Explorer (MUSE) is a proposed NASA MIDEX mission, currently in Phase A, composed of a multi-slit EUV spectrograph (in three narrow spectral bands centered around 171A, 284A, and 108A) and an EUV context imager (in two narrow pass
We review the coronal visible and infrared lines, collecting previous observations, and comparing, whenever available, observed radiances with those predicted by various models: the quiet Sun, a moderately active Sun, and an active region as observed